Главная » Просмотр файлов » Автоматизация шлифовального процесса путем разработки автоматической системы управления преднатягом

Автоматизация шлифовального процесса путем разработки автоматической системы управления преднатягом (1089122), страница 7

Файл №1089122 Автоматизация шлифовального процесса путем разработки автоматической системы управления преднатягом (Автоматизация шлифовального процесса путем разработки автоматической системы управления преднатягом) 7 страницаАвтоматизация шлифовального процесса путем разработки автоматической системы управления преднатягом (1089122) страница 72018-01-12СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 7)

Отношение 7.5 . Отношение 1.7 , 2.8

Активное сопротивление статора rc=0,45 Ом.

Активное сопротивление ротора rр=0,7 Ом.

Величина вектора потокосцепления ротора

, (2.14)

где

- обобщенные векторы, соответственно, тока, потокосцепления статора;

- обобщенный вектор потокосцепления ротора;

Lm - взаимная индуктивность статора и ротора;

- индуктивность рассеяния, соответственно, статора и ротора.

= =19*(0,1+51*10-4)+19*0,1=3,8.

2.4.5Расчет теплового параметра шпиндельного узла

Шпиндельным узлам, работающим на больших скоростях, к которым предъявляются высокие требования по точности и жесткости, необходим эффективный тепло отвод. Асинхронный двигатель имеет коэффициент полезного действия равный η=88%, то есть потери мощности, подаваемой на обмотки, составляет 10%. Эта мощность расходуется на потери в роторе и трение. Если первый показатель нельзя изменить, так как увеличение проводимости материала ротора повлечет изменение остальных показателей системы, включая стоимость узла, то второй параметр можно контролировать величиной объема СОЖ в системе. Отвод температуры из шпиндельной бабки производится за счет прокачки жидкости, отводящую на себя излишнюю температуру через технологические отверстия в корпусе у передней и задней опоры. Объем жидкости, циркулирующей через систему, рассчитывают по формуле:

(2.15)

где

Q – количество отводящегося тепла за время Δt;(кДж/мин)

qm – расход охлаждающей жидкости; (кг/мин)

Cm – удельная теплота охлаждающей жидкости;(кДж/кг*с0)

ΔT – приращение температуры.С0

Ротор, как и статор, в процессе работы также нагреваются, что может привести к обугливанию поверхностей и, как следствие, снижению мощности двигателя, что не допустимо. Охлаждение их также предусмотрено и производится с отдельного ввода. Жидкость, проходя через пазы муфты статора, предотвращает его перегревание.

(2.16)

qm=72/1.9*10=4 л/мин

2.4.6Определение напряжений и перемещений в вале ротора.

Вал узла и установленный на нем ротор составляют неразъемную систему для обеспечения передачи вращающего момента. Роторные пластины, жестко установленные на втулке, устанавливаются на вал с натягом Δ=0.034мм. Это достигается нагревом втулки на 190 С0 ,что приведет к объемному расширению на 40мкм. При остывании между цилиндрами возникает контактное напряжение pk. При посадке внешний радиус внутреннего цилиндра сократится, и точки цилиндра на контактной поверхности получат отрицательное смещение.

(2.17)

где

E – коэффициент упругости первого рода (Па);

а – внутренний диаметр вала (мм.);

b- внешний диаметр ротора (мм.);

c- внутренний диаметр ротора (мм.).

Картина распределения напряжений в сопряженных цилиндрах показана рисунке 2.20.


Рис. 2.20

Таким образом, в результате посадки оба цилиндра будут работать как одно целое и в (составном цилиндре) возникнут напряжения взаимодействия. Если внутренний радиус вала мал, то посадка труб по соотношению (2.17) дает почти двукратное снижение эквивалентного напряжения в контактных зонах. В дальнейшем при нагрузке ротора моментом, контактное давление не допустит прокручивания и пластической деформации, если рабочее давление не превышает давление предварительного обжатия. Проектируемый шпиндельный узел (исходя из требований предъявляемых к двигателю) способен развить момент до 100 Н*м, при требуемых в режимах резания 23 Н*м. Рассчитаем критический момент, при a=50 мм., b=173 мм, c=72 мм, h=140 мм:

(2.18)

где

P – сила приложенная к валу;

f- коэффициент трения;

h- ширина ротора.

Это удовлетворяет требованиям, предъявляемым к жесткости соединения с запасом в 10 раз. Натяг вала и ротора соответствует посадке П6.

3Система управления

3.1Электрический привод с асинхронным двигателем

ЭП с трехфазным асинхронным двигателем (АД) является самым массовым видом привода в промышленности, коммуналь­ном и сельском хозяйстве. Такое положение определяется просто­той изготовления и эксплуатации АД, их меньшими по сравнению с двигателями постоянного тока массой, габаритами и сто­имостью, надежностью в работе.

В основную общепромышленную серию 4А входят двигатели на мощности от 0,06 до-400 кВт с высотами осей вращения от 50 до 355 мм, которые выпускаются в самых различных модификациях и конструктивных исполнениях: с. повышенными пусковым момен­том и скольжением; с фазным ротором; встраиваемые; малошумные; со встроенной температурной защитой; с электромагнитным тормозом; с подшипниками скольжения; химострйкие. АД различа­ются также по климатическому исполнению и категории размеще­ния. Для комплектации ЭП большой мощности выпускаются АД серий АН-2 (мощностью до 2000 кВт), АВ (мощностью до 8000кВт), ДАЗО (мощностью до 1250кВт) и ряд других.

Для ЭП крановых механизмов производятся специализирован­ные АД серии MTF (с фазным ротором) и MTKF (с короткозамкнутым ротором), а для рабочих машин и Механизмов металлур­гического производства—серии МТН (с фазным ротором) и МТКН (с короткозамкнутым ротором). В составе этих серий выпускаются и многоскоростные АД. Двигатели указанных серий отличаются повышенной механической прочностью, большими пусковыми моментами при сравнительно небольших пусковых токах, хорошими динамическими показателями. Крановые и метал­лургические АД новой серии 4МТ отличаются улучшенными технико-экономическими показателями работы, расширенной шка­лой мощностей, более высоким уровнем стандартизации.

Основной областью применения АД вплоть до недавнего времени являлся нерегулируемый ЭП. В последние годы в связи с разработкой и Серийным выпуском электротехнической промыш­ленностью тиристорных преобразователей частоты и напряжения стали создаваться регулируемые асинхронные ЭП с характеристи­ками, не уступающими по своим показателям ЭП постоянного тока. Применение таких ЭП в ,силу определенных преимуществ АД представляет собой прогрессивную тенденцию развития ав­томатизированных ЭП не только в нашей стране, но и за рубежом.

С разработкой и освоением серийного производства мощных силовых полупроводниковых приборов появилась возможность широкого применения мощных преобразователей частоты (ПЧ) для питания обмоток высоковольтных АД. Таким образом, появилась возможность создания регулируемых по скорости мощных высоковольтных асинхронных электроприводов.

Известно, что механические и динамические характеристики, энергетические показатели АД в частотно-регулируемом электроприводе определяются: принятым законом частотного управления, способом частотного управления, алгоритмической и аппаратной реализацией автоматической системы регулирования (АСР) электропривода.

Несмотря на большое количество разработанных и исследованных структур АСР для низковольтных электроприводов, применение их для мощных высоковольтных электроприводов не представляется возможным. Это связано с особенностями высоковольтного электропривода, а именно:

  • значительным усложнением непосредственного измерения параметров электропривода;

  • условием минимальной асимметрии питающих токов, вытекающей из требования к повышенной энергетике электропривода;

  • применением трехфазного двух обмоточного АД, питающегося от двухсекционного преобразователя частоты, вытекающим из условия улучшенных энергетических, регулировочных свойств и способа наращивания выходной мощности.

Кроме перечисленных особенностей необходимо отметить, что значительная часть высоковольтных АД рассчитана на высокие скорости вращения (6000 об/мин и выше), что исключает возможность применения вращающихся на валу АД датчиков.

Таким образом, на основании анализа приведенных законов, способов, технических устройств частотного управления асинхронными электроприводами, можно сделать следующие выводы.

  1. Для мощных электроприводов механизмов, работающих с постоянным моментом сопротивления на валу целесообразно применение закона частотного управления с постоянством потокосцепления ротора, отличающегося наивысшей перегрузочной способностью и обеспечивающего наилучшие динамические свойства двигателя.

  2. Для мощных электроприводов механизмов, благодаря своим высоким энергетическим показателем и простоте технической реализации целесообразно использовать закон частотного управления по минимуму потерь.

  3. Для наращивания мощности электропривода и одновременного повышения его энергетических показателей, используются трехфазные одно-обмоточные двигатели с пространственным сдвигом между трехфазными статорными обмотками, питающимися от трехфазного преобразователя частоты токами (напряжениями) с фазовым сдвигом в 60 эл.град.

  4. Известные в настоящее время технические устройства для частотного управления асинхронным электроприводом в полной мере не отвечают требованиям, предъявляемым к мощному высоковольтному электроприводу и им присущи следующие недостатки:

  • ограниченная низкоскоростными электроприводами область применения, необходимость изготовления специальной машины или переделка серийной, применение специальных устройств для механического сочленения валов, невозможность применения в запыленных и агрессивных средах, что обусловлено наличием датчиков на валу и внутри машины;

  • высокая сложность технической реализации, обусловленная наличием сложных технических устройств: координатного преобразования, фильтров, фазовращателей, функциональных преобразователей, блоков коррекции мгновенного значения частоты;

  • наличие большого числа датчиков, осуществляющих высоковольтную гальваническую развязку;

  • невысокая надежность, что обусловлено наличием датчиков на валу и внутри машины, высокой сложностью технической реализации блоков АСР, датчиков, осуществляющих высоковольтную гальваническую развязку.

3.2Техническое описание системы

В основе описания АД при переменной частоте питающей сети лежит общая теория электрических машин.

Основой этого служат уравнения, составленные в фазовых координатах. Особенностью АД является совокупность магнитосвязанных цепей с коэффициентами само- и взаимоиндукции, периодически изменяющимися в функции угла поворота ротора относительно статора. В зависимости от степени насыщения магнитной системы машины, эти коэффициенты могут зависеть еще и от токов во всех обмотках. При записи уравнений в фазовых координатах получают систему дифференциальных уравнений высокого порядка (в трехфазной системе координат число уравнений равно 14) с переменными коэффициентами. Пользоваться такой системой для исследования электромеханических процессов, происходящих в АД не представляется возможным в связи с громоздкостью, наличием переменных коэффициентов, нелинейностью. Дальнейшее упрощение и преобразование исходной системы уравнений основывается на следующем общем методе. При этом уравнения в фазовых координатах преобразуются к уравнениям, выраженным через обобщенные (результирующие) векторы, вводится система относительных единиц для токов, напряжений, потокосцепления, скоростей вращения, частот, моментов, активных, индуктивных сопротивлений. Введение системы относительных единиц упрощает вид уравнений, а выражение переменных через результирующие векторы приводит к виду дифференциальных уравнений, при котором коэффициенты дифференциальных уравнений ненасыщенной машины являются постоянными величинами. Для насыщенной машины необходимо вводить зависимость величин этих коэффициентов от магнитного состояния машины.

Характеристики

Список файлов ВКР

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6310
Авторов
на СтудИзбе
312
Средний доход
с одного платного файла
Обучение Подробнее