Главная » Просмотр файлов » Автоматизация шлифовального процесса путем разработки автоматической системы управления преднатягом

Автоматизация шлифовального процесса путем разработки автоматической системы управления преднатягом (1089122), страница 6

Файл №1089122 Автоматизация шлифовального процесса путем разработки автоматической системы управления преднатягом (Автоматизация шлифовального процесса путем разработки автоматической системы управления преднатягом) 6 страницаАвтоматизация шлифовального процесса путем разработки автоматической системы управления преднатягом (1089122) страница 62018-01-12СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 6)


Рис. 2.14

2.2.4Опора с регулируемым натягом в зависимости от температурного расширения

В предыдущем описании опора качения, содержит установленные в корпусе подшипники и устройство для создания предварительного натяга с помощью нажимного органа, воздействующего по меньше мере на одно из колец этих подшипников под действием силового органа, размещенного вне опоры и связанного с нажимным органом по средством канала, заполненного упругой мало сжимаемой средой, например гидропластом. Кроме того, силовой орган выполнен в виде гидроцилиндра с поршнем, воздействующим на упругую среду, а нажимной орган — в виде нескольких плунжеров, равномерно расположенных по окружности. С целью автоматического регулирования величины предварительного натяга подшипников в зависимости от их фактической температуры предлагаемая опора снабжена датчиком температуры, установленным в зоне подшипника и управляющим устройством для создания предварительного натяга. На Рис.2.15 изображена предлагаемая опора качения; на Рис.2.16 — разрез по А—А. Опора качения состоит из подшипника 1, установленного в корпусе 2. Устройство для создания предварительного натяга имеет нажимной и силовой органы. Нажимной орган содержит плунжеры 3, которые находятся в гнездах втулки 4 и взаимодействуют с нажимным кольцом подшипника через промежуточное кольцо 5. Силовой орган представляет собой цилиндр 6, установленный вне опоры. Внутри цилиндра 6 расположен плунжер 7,находящийся под воздействием поршня S, на который действует масло под давлением, потопающее из гидросистемы по магистрали 9. Канал 10 между плунжерами 3 и 7 заполнен гидропластом. В зоне подшипника 1 расположен датчик 11-температуры, контролирующий режим работы 15 опоры и управляющий устройством для создания предварительного натяга. В результате этого повышается надежность, долговечность и к. п. д. опоры.


Рис.2.15 Рис.2.16

2.3Проектирование высокоскоростных шпиндельных узлов приводов главного движения

В представленном дипломном проекте автоматизируется процесс шлифования. Одной из проблем, возникающей при эксплуатации шпиндельных узлов станков на опорах качения в режимах шлифования является их повышенное тепловыделение. Высокие частоты вращения требуют более тщательного исполнения точности форм посадочных поверхностей подшипников и спрягаемых с ними деталей ,более узких допусков на воличины посадок. Необходимым условием решения данной задачи является также выбор оптимального предварительного натяга в подшипниках опоры. Практика показывает, что при наличии слишком малых или чрезмерно больших предварительных натягов ухудшаются динамические характеристики узла, растут потери мощности на трение в радиальноупорных шарикоподшипниках, что приводит к повышенному нагреву, снижению точности и долговечности всего шпиндельного узла. Сложность решения обьяснястся тем, что , наиболее приемлемые с точки зрения жесткости и быстроходности “Х” и “О” -образные схемы устаовки не обеспечивают равномерного распределения осевых нагрузок между подшипниками. Кроме того, при вертикальном расположении шпинделя сила веса может привышать требуемые усилия предварительного натяга. В особенности это характерно для скоростных узлов, имеющих в качестве привода электрошпиндель.

При рассматривании модели распределения осевой нагрузки между подшипниками передней опоры шпинделя с учетом внешних сил и усилий натяга , она должна быть достаточно простой, для того чтобы рассмотреть большее число вариантов разрабатываемой конструкции. Но при этом на стадии котцептуального проектирования модель должна хотябы на линейном уровне обеспечивать адекватность реальным процессам.

Пусть в передней опоре установлены na радиально-упорных шарикоподшипников навстречу ожидаемой внешней нагрузке Р и nв подшипников, необходимых для создания преднатяга подшипников “А”

Используем линейную модель зависимости осевой силы , приложенной к подшипнику от относительного смещения колец. При наличии преднатяга нагрузка в подшипниках “А” и “В” будет неодинаковой.

, (2.9)

где

P1a, P1b –нагрузка на подшипники “А”, “В”, “Н”;

Р0 – суммарная сила преднатяга в передней опоре Н;

na, nb – количество подшипников в передней опоре;

а, ь - относительные смещения колец подшипников;

j - жесткость подшипника.

При наличии внешней силы Р шпиндель сместится в осевом направлении на величину 

, (2.10)

где

P – внешняя осевая сила (Н);

 - осевое смещение шпинделя (мкм);

F - результирующая осевая нагрузка (Н);

G - сила веса ротора (Н).

Область допустимой работы подшипников опоры ограничивается величинами максимальной Р1мах и минимально допустимой Р1мin нагрузками на подшипник рис. 2.17. Из этого условия и представленных зависимостей можно определить допустимый диапазон изменения результирующей нагрузки Fmin…Fmax.

В общем случае существует оптимальное решение данной задачи рис.2.17, 2.18. Опттимум получается пересичением плоскостей нагрузок с введением верхних и нижних ограничений по допустимым нагрузкам на подшипник.

Полученные соотношения могут быть использованны для расчета оптимальных условий натяга в высокоскоростных шпиндельных узлах а также приделы их регулирования в зависимости от режимов резния.

2.4Расчет шпиндельного узла

На основании исходных параметров опоры шпиндельного узла выполнены на подшипниках качения.

2.4.1Выбор компоновочной схемы

На основании требований к точности обработки и скоростных параметров выбираем схемы узла Рис. 2.19. Данная схема является высокоскоростной и при этом имеет большую радиальную жесткость .


Рис. 2.19 компоновачная схема

В мотор-шпинделях, где расстояние между обмотками статора и валом ротора должны быть постоянными во избежание нагрева и обгорания обмоток, поэтому величина радиальной жесткости крайне важна. Предполагается использовать в опорах комплекты дуплексных подшипников 46216 и 46218.

2.4.2Определение компоновочной схемы

, (2.11)

На основании эскизного проекта, технологических расчетов режимов и методических данных приводим значения параметров проектируемого шпиндельного узла:

Максимальная частота вращения шпинделя - 4000 об/мин.

Тип смазки – пластичная ЦИАТИМ-202. Для заданной точности станка допустимая температура наружнего кольца- 35С0

Класс точности подшипника- 3

Предварительный натяг-легкий, средний.

Угол контакта - 26 град.

Диаметр передного конца шпинделя dk = 120.00мм.

Диаметр межопорной части шпинделя dm = 90.00мм.

Диаметр заднего конца шпинделя dз = 80.00 мм.

Длинна переднего конца шпинделя a =100.00 мм.

Межопорное расстояние b= 350.00мм.

2.4.3Расчет жесткости опор ШУ

Расчет опор для шпиндельного узла, предназначенного для шлиф процесса основывается на силах, действующих на круг во время обработки. Для получения поверхности с шероховатостью Rz=0.63 подшипники и посадочные места, отвечающие за жесткость опор должны иметь следующие параметры.

Таблица 2.1

Точность обработки (мкм)

Точность подшипников

Точность деталей ШП узла

Точность ШУ в сборе

Шероховатость (мкм)

Волнистость (мкм)

Некруглость дорожки качения

Некруглость посадочной поверхности

Блуждающее биение

Некруглость посадочной поверхности шпинделя

Некруглость посадочной поверхности корпуса

Радиал биение оси

Амплитуда колебания

Вращ. кольцо

невращ. Кольцо

Вращ. Кольцо

невращ.кольцо

0.63

0.8

0.3

0.6

0.3

0.6

0.4

0.3

0.6

1.2

0.15


При этом рекомендуемый преднатяг при посадке должен составлять -3-2 мкм.

Осевая жесткость подшипников выбранной серии j0=25 кгс/мкм, но так как монтаж на быстроходные опоры идет по схеме “Т” осевая жесткость увеличивается на 20% и составляет j0=30 кгс/мкм

Рекомендуемая сила преднатяга для сдвоенных подшипниках в опорах равна А0=90 кГс

Общая поддатливасть подшипника равна:

=0.4*3=1, (2.12)

где

R0- радиальная поддатливасть;

K- биение.

По зависимости осевого смещения подшипника от схемы монтажа определим возможное осевое смещение - оно составит 6 мкм. Эта величина максимально возможного смещения в шпиндельном узле при рассчитанном процессе резания. Радиальная величина нагрузки – Рz= 5000. Н

Передняя и задняя опоры состоят из подшипников одного типа и серии:

Таблица2.2

обозначение

d

D

B

T

C

C0

nпред,пласт

М, кг

46216

90

160

30

30

111000

76200

4300

1,68

Число тел качения в подшипнике z= 14 , угол контакта = 26 град

Сила преднатяга подшипника А0=900Н, осевая сила 500Н

Радиальная жесткость опор составляет 735470 Н/мм

Осевая жесткость опор 318898 Н/мм, что соответствует табличным значениям. По этим значениям радиальная жесткость шпиндельного узла равна 384049.72 Н/мм .

2.4.4Расчет электрических параметров шпиндельного узла

Проектируемый шпиндельный узел может выполнять не только операции связанные с шлифованием, предполагается использовать его в приводах ГПМ, снижая их массу и повышая их гибкость. Поэтому параметры должны удовлетворять широкому спектру требований по силе резания, моменту и скорости вращения с неизменными параметрами жесткости и устойчивости работы.

Электрический привод рассчитывается исходя из требуемой номинальной мощности и напряжения питающей сети:

Pн=10 кВт,

Uн=380 В.

Номинальная частота f=50 Гц.

По этим параметрам выбираем асинхронный двигатель с коротко замкнутым ротором 4А132М2 на основании которого и проектируем шпиндельный узел.1

Номинальный (фазнай) ток I =21 A.

Номинальная скорость n=4000 об/мин.

 - угловая скорость вращения ротора АД; 400

Номинальный момент

M= = . (2.13)

Момент инерции J=0.09 кгм2

Индуктивность рассеяния статора ls =4310-4 Гн

Индуктивность рассеяния ротора lr =5110-4 Гн

Взаимная индуктивность статора и ротора Lm= 0.1045 Гн

Число пар полюсов 2n=3

КПД =88%, cos=0.9

Характеристики

Список файлов ВКР

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6384
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее