Главная » Просмотр файлов » В.В. Филинов - Основы микропроцессорной техники

В.В. Филинов - Основы микропроцессорной техники (1084750), страница 15

Файл №1084750 В.В. Филинов - Основы микропроцессорной техники (В.В. Филинов - Основы микропроцессорной техники) 15 страницаВ.В. Филинов - Основы микропроцессорной техники (1084750) страница 152018-01-12СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 15)

Процессор 80386, как и 80286, может работать в двух режимах:

  • Реальный режим, который полностью совместим с 8086.

  • Защищенный режим. В этом режиме возможна адресация до 4 Гбайт физической памяти (32 разряда), через которые при использовании механизма страничной адресации может отображаться до 16 Тбайт виртуальной памяти каждой задачи.

Переключение между этими двумя режимами в обе стороны, в отличие от 80286, производится достаточно быстро, с помощью простой последовательности команд, и аппаратного сброса процессора не требуется.

Процессор может оперировать с 8, 16, 32-битными операндами, строками байт, слов и двойных слов, а также с битами, битовыми полями и строками бит.

В архитектуру процессора введены средства отладки и тестирования. Разрядность регистров данных (AX, BX, CX, DX) и адресов (SI, DI, BP, SP) увеличена до 32. При этом в их обозначении появилась приставка E (Extended — расширенный), например, EAX, ESI. Отсутствие приставки в имени означает ссылку на младшие 16 разрядов соответствующего регистра. Регистры данных и адресов объединены в группу регистров общего назначения, которые иногда могут заменять друг друга. Это может рассматриваться как отход от идеологии специализации всех регистров.

Помимо упомянутых регистров в состав процессора входят еще четыре управляющих регистра (CR0, CR1, CR2, CR3), которые хранят признаки состояния процессора, общие для всех задач. В процессоре Pentium к ним добавлен еще и регистр CR4. Кроме того, процессор содержит еще системные адресные регистры для ссылок на сегменты и таблицы в защищенном режиме, регистры отладки и регистры тестирования. Как видим, от модели к модели количество регистров процессора постоянно возрастает.

Процессор позволяет выделять в памяти сегменты и страницы. Сегменты в реальном режиме имеют фиксированный размер, в защищенном — переменный. Страницы, которых не было в предыдущих моделях, представляют собой области логической памяти размером 4 Кбайт, каждая из которых может отображаться на любую область физической памяти. Если сегменты используются на прикладном уровне, то страницы применяются на системном.

Процессор 80386 может использовать режимы 32-битной или 16-битной адресации. Режим 16-битной адресации соответствует режимам процессоров 8086 и 80286, при этом в качестве компонентов адреса используются младшие 16 бит соответствующих регистров.

Отличия от предшествующего процессора 80286 в выполнении операций ввода/вывода сводятся к добавлению возможностей обращения к 32-битным портам. Важно отметить, что строковые команды процессора 80386 обеспечивают блочный ввод/вывод с большей скоростью, чем стандартный контроллер прямого доступа к памяти.

Процессор выпускался в 100-выводном корпусе. Была предусмотрена возможность подключения внешнего сопроцессора 80387.

Начиная с процессора 80386, появляются средства обслуживания многозадачного режима. Естественно, процессор не может обрабатывать несколько задач одновременно, выполняя по несколько команд сразу. Он только периодически переключается между задачами. Но с точки зрения пользователя получается, что компьютер параллельно работает с несколькими задачами.

Еще одним принципиальным шагом стало создание в 1989 году процессора Intel 486DX, в котором появились встроенный математический сопроцессор, существенно ускоривший выполнение арифметических операций, и внутренняя кэш-память, ускоряющая обмен с оперативной памятью. Максимальный объем адресуемой памяти этого процессора — 4 Гбайт. На тактовой частоте 25 МГц производительность была 16,5 MIPS. Начиная с процессора 486, получило распространение так называемое умножение тактовой частоты, то есть внутреннее удвоение и даже учетверение внешней тактовой частоты (обозначается 486DX2, 486DX4).

Процессор 486 является представителем второго поколения 32-разрядных процессоров. Он сохраняет основные принципы архитектуры процессора 80386, а также обеспечивает полную совместимость со своими предшественниками. Но в то же время он имеет ряд преимуществ.

  • В процессор введена внутренняя кэш-память 1-го уровня (Internal cache Level 1) размером 8 Кбайт и предусмотрены средства для двухуровневого кэширования.

  • В процессор введен математический сопроцессор (в модели процессора 486SX сопроцессор отсутствует).

  • Повышена производительность обмена по внешней шине — введены так называемые пакетные циклы, передающие одно слово за один такт шины.

  • В архитектуре процессора применено скоростное RISC-ядро, которое позволяет наиболее часто встречающиеся команды выполнять за один такт.

  • В структуру введены буферы отложенной записи.

  • В отдельных моделях предусмотрено внутреннее умножение тактовой частоты (на 2, 2,5 или 3).

Все это обеспечило существенное увеличение быстродействия. А усовершенствованный защищенный режим дает некоторые дополнительные возможности.

Кэш-память (или просто кэш, от англ. Cache — склад, тайник) предназначена для промежуточного хранения информации из системной памяти с целью ускорения доступа к ней. Ускорение достигается за счет использования более быстрой памяти и более быстрого доступа к ней. При этом в кэшпамяти хранится постоянно обновляемая копия некоторой области основной памяти.

Необходимость введения кэша связана с тем, что системная память персонального компьютера выполняется на микросхемах динамической памяти, которая характеризуется меньшей стоимостью, но и более низким быстродействием, по сравнению со статической памятью. Идея состоит в том, что благодаря введению быстрой буферной, промежуточной статической памяти можно ускорить обмен с медленной динамической памятью. По сути, кэш-память делает то же, что и применявшийся ранее конвейер команд, но на более высоком уровне. В кэш-памяти хранится копия некоторой части системной памяти, и процессор может обмениваться с этой частью памяти гораздо быстрее, чем с системной памятью. Причем в кэш-памяти могут храниться как команды, так и данные.

Выигрыш в быстродействии от применения кэша связан с тем, что процессор в большинстве случаев обращается к адресам памяти, расположенным последовательно, один за другим, или же близко друг к другу. Поэтому высока вероятность того, что информация из этих адресов памяти окажется внутри небольшой кэш-памяти. Если же процессор обращается к адресу, расположенному далеко от тех, к которым он обращался ранее, кэш оказывается бесполезным и требует перезагрузки, что может даже замедлить обмен по сравнению со структурой без кэш-памяти.

В принципе кэш-память может быть как внутренней (входить в состав процессора), так и внешней. Внутренний кэш называется кэшем первого уровня, внешний — кэшем второго уровня. Объем внутреннего кэша обычно невелик — типовое значение 32 Кбайт. Объем внешнего кэша может достигать нескольких мегабайт. Но принцип функционирования у них один и тот же.

Режим пакетной передачи (Burst Mode), впервые появившийся в процессоре 486, предназначен для быстрых операций со строками кэша. Пакетный цикл обмена (Burst Cycle) отличается тем, что для пересылки всего пакета адрес по внешней шине адреса передается только один раз — в начале пакета, а затем в каждом следующем такте передаются только данные. Адрес для каждого следующего кода данных вычисляется из начального адреса по правилам, установленным как передатчиком данных, так и их приемником. Например, адрес каждого следующего слова данных вычисляется как ин-крементированный адрес предыдущего. В результате время передачи одного слова данных значительно сокращается. Понятно, что обмен пакетными циклами возможен только с устройствами, изначально способными обслуживать такой цикл. Допустимая длина пакета не слишком велика, например, при чтении размер пакета ограничен одной строкой кэша.

Режим внутреннего умножения тактовой частоты процессора был предложен для того, чтобы повысить быстродействие процессора, но при этом устанавливать его в системные платы, рассчитанные на невысокие тактовые частоты. Например, модель процессора 486DX2-66 работает в системной плате с тактовой частотой 33, но эту частоту внутри себя преобразует в удвоенную частоту — 66 МГц. Это позволяет уменьшить общую стоимость системы, так как снижает требования к элементам системной платы.

Процессор 486 выпускался в 168- или 169-выводных корпусах. Напряжение питания — 5 В или 3,3 В. Введение пониженного напряжения питания 3,3 В связано с необходимостью снижения величины рассеиваемой мощности. Растущая тактовая частота и усложнение структуры процессоров приводят к тому, что рассеиваемая ими мощность достигает нескольких ватт. Для современных процессоров уже обязательно применение вентиляторов на корпусе процессора.

В 1995 году появились первые процессоры Pentium, открывшие новый этап в развитии семейства. Они были 32-разрядными внутри, но имели 64-разрядную внешнюю шину данных. Принципиальным отличием было использование в них так называемой суперскалярной архитектуры, следствием чего стало более высокое быстродействие при той же тактовой частоте, что и i486DX. При тактовой частоте 66 МГц производительность процессора достигала 112 MIPS. В 1996 году тактовая частота Pentium была доведена до 200 МГц, а стоимость снизилась настолько, что он стал рядовым процессором персональных компьютеров семейства IBM PC.

В 1997 году Pentium был дополнен технологией MMX, призванной ускорять выполнение мультимедийных приложений (обработку изображений и звука). И в этом же году появился процессор Pentium II, который включает в себя технологию ММХ и имеет более высокое быстродействие. Возможная тактовая частота достигла 400 МГц. В последние годы появились процессоры Pentium III и Pentium IV, имеющие еще более развитую архитектуру и тактовую частоту, превышающую 1 ГГц у Pentium III и 3 ГГц у Pentium IV.

Процессоры Pentium относятся к пятому поколению процессоров или к третьему поколению 32-разрядных процессоров. По своим основным архитектурным принципам они совместимы с процессорами 386 и 486. Но имеются существенные отличия, позволяющие говорить о новом поколении:

  • Суперскалярная архитектура процессора, то есть процессор имеет два пятиступенчатых параллельно работающих конвейера обработки информации, благодаря чему он способен одновременно выполнять две команды за один такт. Необходимо отметить, что преимущества такой архитектуры проявляются только в случае специальной компиляции программного обеспечения, позволяющей осуществлять параллельную обработку.

  • Внешняя 64-разрядная шина данных для повышения производительности. Это требует соответствующей организации памяти. Из-за такой особенности процессор иногда неправильно называют 64-разрядным (хотя внутри он все-таки остался 32-разрядным). Внешняя шина адреса процессора — 32-разрядная.

  • Применение технологии динамического предсказания ветвлений (переходов).

  • Раздельный кэш для команд и данных объемом 8 Кбайт каждый. Длина строки кэша — 32 байта. Оба кэша работают в режиме обратной записи.

  • Повышенная в 2—10 раз по сравнению с процессором 486 производительность встроенного математического сопроцессора. В нем применена восьмиступенчатая конвейеризация и специальные блоки сложения, умножения и деления, что позволяет выполнять операции с плавающей точкой за один такт процессора.

  • Сокращено время (число тактов) выполнения команд.

  • Предусмотрена возможность построения двухпроцессорных систем.

  • Введены средства управления энергопотреблением и тестирования.

Предсказание ветвлений позволяет продолжать выборку и декодирование потока команд после выборки команды ветвления (перехода), не дожидаясь проверки условия перехода. В прежних моделях в данном случае приходилось приостанавливать конвейер. Динамическое предсказание основывается на анализе предыдущей программы и накапливании статистики поведения. Исходя из этого анализа предсказывается наиболее вероятное условие каждого встречающегося в программе перехода.

В дополнение к базовой архитектуре 32-разрядных процессоров Pentium имеет набор регистров MSR (Model Specific Registers). В него входит группа тестовых регистров (TR1 — TR12), средства слежения за производительностью, регистры-фиксаторы адреса и данных цикла, вызвавшего срабатывание контроля машинной ошибки. Название этой группы регистров указывает на их уникальность для каждой модели процессоров Pentium.

Средства для слежения за производительностью (мониторинга производительности) включают в себя таймер реального времени и счетчики событий. Таймер представляет собой 64-разрядный счетчик, инкрементируемый с каждым тактом процессора. Два счетчика событий имеют разрядность по 40 бит и программируются на подсчет событий различных классов, связанных с шинными операциями, исполнением команд, связанных с работой кэша, контролем точек останова и т.д. Сравнивая состояния таймера и счетчиков событий, можно сделать вывод о производительности процессора.

Тестовые регистры позволяют управлять большинством функциональных узлов процессора, обеспечивая возможность подробного тестирования их работоспособности. Специальные биты регистра TR12 позволяют отключить новые архитектурные свойства (предсказание и трассировку ветвлений, параллельное выполнение инструкций), а также работу первичного кэша.

Средства для построения двухпроцессорных систем позволяют на одной локальной шине устанавливать два процессора с объединением почти всех одноименных выводов. Это дает возможность использовать симметричную мультипроцессорную обработку (SMP — Symmetric Multi-Processing) или строить функционально избыточные системы (FRC — Functional Redundancy Checking).

В режиме SMP каждый процессор выполняет свою задачу, порученную ему операционной системой, что поддерживается такими системами, как Novell NetWare, Windows NT, Unix. Оба процессора разделяют общие ресурсы компьютера, включая память и устройства ввода/вывода. В каждый момент шиной управляет один процессор, по определенным правилам они меняются ролями. В идеальном случае производительность системы увеличивается вдвое (без учета обращений к шине и времени на переключение процессоров).

В конфигурации FRC два процессора выступают как один логический процессор. Основной процессор (Master) работает в обычном однопроцессорном режиме. Проверочный процессор (Checker) выполняет все те же операции внутри себя, не управляя внешней шиной, и сравнивает сигналы основного процессора с теми, которые генерирует сам. В случае несовпадения формируется сигнал ошибки, обрабатываемый как прерывание. То есть в данном случае увеличивается надежность системы в целом (в идеале — вдвое).

Характеристики

Тип файла
Документ
Размер
1,16 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6353
Авторов
на СтудИзбе
311
Средний доход
с одного платного файла
Обучение Подробнее