Иванков П.Л. - Конспект лекций по математическому анализу (1081165), страница 12
Текст из файла (страница 12)
Прямая y = a называется правой горизонтальной асимптотой графика функции y = f (x), если lim f (x) = a. По теореме оx→+∞связи функции, её предела и бесконечно малой мы можем написать f (x) = a + o(1), гдеo(1) — бесконечномалая функция при x → +∞. И здесь расстояние |a − f (x)| от точкиM x, f (x) графика функции y = f (x) до асимптоты стремится к нулю, если точка Mвдоль графика стремится в бесконечность (т. е. если x → +∞). Аналогично определяется3и левая горизонтальная асимптота в случае функции, определённой при x < x0 (т.
е. вокрестности точки −∞).πПример. График функции y = arctg x имеет горизонтальные асимптоты y =и2πy = − соответственно при x → +∞ и x → −∞. Горизонтальные асимптоты имеют21также графики функций y = ax , y = , y = arcctg x, y = th x, y = cth x и др.xПусть снова функция f (x) определена при x > x0 , и пусть f (x) = Ax + B + o(1) приx → +∞. Тогда прямая y = Ax + B называется (правой) наклонной асимптотой графикафункции y = f (x). И здесь расстояние от точки M (x, f (x)) графика функции y = f (x) доасимптоты стремится к нулю, если M стремится в бесконечность вдоль графика рассматриваемой функции (т. е.
при x → +∞). Это следует из того, что указанное расстояниене превосходит модуля разности соответствующих ординат, т.е. величины |f (x)−Ax−B|,которая бесконечно мала при x → +∞ по определению асимптоты. Аналогично определяется и левая наклонная асимптота для функции, заданной при x < x0 . Очевидно также,что горизонтальная асимптота является частным случаем наклонной.Пример. В курсе аналитической геометрии встречаются асимптоты гиперболы. Например, расположенная в первой четверти√часть гиперболы x2 − y 2 = 1, которую можнорассматривать как график функции y = x2 − 1, имеет (правую) наклонную асимптотуy = x.Теорема (о необходимых и достаточных условиях наличия наклонной асимптоты).Пусть функция f (x) определена при x > x0 .
Прямая y = Ax + B тогда и только являетсяправой асимптотой графика данной функции, когдаf (x)=A иx→+∞ xlimlim f (x) − Ax = B .x→+∞Доказательство. Необходимость. Пусть y = Ax + B — правая наклонная асимптотаграфика функции y = f (x). Тогда по определению f (x) = Ax+B +o(1), x → +∞. Отсюдаf (x)Bo(1)= A++→ A, f (x) − Ax = B + o(1) → B, если x → +∞. Необходимостьxxxдоказана.Достаточность. Если f (x) − Ax → B при x → +∞, то f (x) − Ax = B + o(1),x → +∞. Поэтому прямая y = Ax + B есть (правая) наклонная асимптота графика функции y = f (x). Предел lim f (x)/x = A здесь не понадобился.
Достаточность доказана.x→+∞Теорема доказана.Пример.Найдём с помощью доказанной теоремы асимптоты графика функ11+y(x)x3 + x2x3 + x2x.Имеем lim= lim= lim= 1;ции y =1x→∞ xx→∞ x(x2 + 1)x→∞x2 + 11+ 2x11−x3 + x2 − x3 − xx = 1.lim y(x) − x = lim=lim1x→∞x→∞x→∞x2 + 11+ 2xВ данном случае прямая y = x + 1 является двусторонней наклонной асимптотой.4кафедра «Математическое моделирование»проф. П. Л. ИванковМатематический анализконспект лекцийдля студентов 1-го курса 1-го семестравсех специальностей ИУ, РЛ, БМТ (кроме ИУ9)Лекция 11.Производная функции в точке, ее геометрический и механическийсмысл. Уравнения касательной и нормали к графику функции в заданной точке.
Бесконечная производная, односторонние производныеи их геометрический смысл. Дифференцируемость функции в точке,эквивалентность дифференцируемости существованию в точке конечной производной. Связь непрерывности и дифференцируемости.Основные правила дифференцирования функций. Дифференцирование обратных функций.ОЛ-2, пп. 1.1-1.6, 2.1, 2.2, 4.1, 4.2.Пусть функция f (x) определена в окрестности точки x0 , и пусть ∆x 6= 0 таково,что x0 + ∆x принадлежит указанной окрестности.
Если существует конечный пределf (x0 + ∆x) − f (x0 ), то он называется производной функции f (x) в точке x0 и обознаlim∆x→∞∆x0чается f (x0 ). Как известно, знаменатель дроби под знаком последнего предела называетсяприращением аргумента, а числитель — приращением функции. Поэтому говорят также,что производная есть предел отношения приращения функции к приращению аргументапри условии, что последнее стремится к нулю.Пусть материальная точка движется вдоль оси абсцисс, и пусть x(t) — её координатав момент времени t. Для вычисления мгновенной скорости движения материальной точкиx(t0 + ∆t) − x(t0 )и находят его предел при ∆t → 0.при t = t0 составляют отношение∆tТаким образом, мгновенная скорость изменения координаты (в данном случае абсциссы)материальной точки при t = t0 равна x0 (t0 ).Пусть имеется (плоская) кривая γ, и на ней задана точка M .
Выберем на этой кривойточку M1 , отличную от M и проведем секущую M M1 . Если при стремлении M1 к Mсекущая M M1 стремится занять определенное положение, то прямая T , находящаяся вэтом положении, называется касательной к кривой γ в точке M .1Углом наклона к оси абсцисс прямой l, пересекающей эту ось в точке P , называетсяугол, на который следует повернуть вокруг точки P в направлении против часовой стрелкилуч, исходящий из точки P в положительном направлении оси абсцисс, до его совпаденияс прямой l. Если прямая l параллельна оси абсцисс (или совпадает с ней), то указанный угол по определению считается равным нулю. Пусть дан график функции y = f (x),определённой в окрестности точки x0 и пусть точка M (x0 , f (x0 )) лежит на этом графике.Возьмём на графике функции y = f (x) точку M1 (x0 + ∆x, f (x0 + ∆x)).
Угловой коэффициент (т.е. тангенс угла наклона к оси абсцисс) секущей, проходящей через точки M и M1 ,f (x0 + ∆x) − f (x0 )∆f (x0 )=. Если функция f (x) имеет производную в точке x0 ,равен∆x∆xто угловой коэффициент касательной, положение которой стремится при ∆x → 0 занятьf (x0 + ∆x) − f (x0 ).секущая, равен f 0 (x0 ) = lim∆x→0∆xОтсюда — геометрический смысл производной: производная f 0 (x0 ) равна угловому коэффициенту касательной, проведенной к графику функции y = f (x) в точке (x0 , f (x0 )). Знаяугловой коэффициент, нетрудно составить уравнение касательной:y − f (x0 ) = f 0 (x0 )(x − x0 ) .Нормалью к кривой γ в точке M , лежащей на этой кривой, называется прямая, проходящая через M перпендикулярно касательной к γ в этой точке.
Составим уравнение нормалик графику функции y = f (x) в точке M (x0 , f (x0 )). Вектор нормали к касательной служит направляющимвектором прямой N . В качестве такого вектора можно взять векторn = f 0 (x0 ), −1 . Отсюда получаем (каноническое) уравнение нормали:y − f (x0 )x − x0=.f 0 (x0 )−1Обычно уравнение нормали записывают в виде:x − x0 + f 0 (x0 )(y − f (x0 )) = 0 .Если функция f (x) определена в окрестности точки x0 , и если существуют пределыf (x0 − ∆x) − f (x0 )f (x0 − ∆x) − f (x0 )lim= +∞, или lim= −∞, то говорят, что в∆x→0∆x→0∆x∆xточке x0 функция f (x) имеет бесконечную производную, равную соответственно +∞ или−∞.
Геометрически наличие бесконечной производной означает, что касательная к графику функции в соответствующей точке вертикальна.Если функция f (x) определена в правосторонней окрестности точки x0 , т.е. на полуинтервале [x0 , x0 + η), η > 0, то в точке x0 можно рассмотреть пределf (x0 + ∆x) − f (x0 ),∆x→0+∆xlimкоторый в случае его существования называется правой производной функции f (x) в точкеx0 и обозначается f+0 (x0 ). Аналогично можно рассмотреть левую производную f−0 (x0 ) для2функции, определенной на левосторонней окрестности (x0 − η, x0 ], η > 0, точки x0 . Левая и правая производные называются односторонними.
Чтобы выяснить геометрическийсмысл, например, правой производной, рассмотрим график функции y = f (x), определённой на полуинтервале [x0 , x0 + η), η > 0.Рассмотрим точки точки M (x0 , f (x0 )) и M1 (x0 + ∆x, f (x0 + ∆x)), 0 < ∆x < η, лежащиена рассматриваемом графике. Если M1 стремится к M , и при этом секущая M M1 стремится занять определённое положение, то прямая T в этом положении называется (правой)касательной к графику функции y = f (x) в точке M . Угловой коэффициент такой касательной равен, как и выше, f+0 (x0 ). Аналогично можно рассмотреть левую касательную вточке M0 (x0 , f (x0 )) к графику функции y = f (x), заданной на полуинтервале (x0 − η, x0 ],η > 0. Угловой коэффициент левой касательной равен f−0 (x0 ).
Уравнения одностороннихкасательных составляются так же, как и уравнение обычной (двусторонней) касательной.√√33√∆x−003= +∞. Касательная кПримеры. 1. Пусть y = x. Здесь f (0) = lim∆x→0∆x√3графику функции y = x в точке (0, 0) вертикальна.|0 + ∆x| − |0|= 1,2.Пусть y = |x|.В этом случае f+0 (0) =lim∆x→0+∆x|0 + ∆x| − |0|f−0 (0) = lim= −1. Эта функция не имеет производной при x = 0. Правой∆x→0−∆xкасательной в точке (0, 0) будет прямая y = x, левой — прямая y = −x.(∆x)2/3 − 0= +∞,3.
Рассмотрим функцию y = x2/3 . В данном случае f+0 (0) = lim∆x→0+∆x(∆x)2/3 − 0f−0 (0) = lim= −∞. Левая и правая касательные к графику функции∆x→0−∆x√3y = x2/3 = x2 в точке (0, 0) обе вертикальны и совпадают. Здесь вертикальная прямая, т.е. ось ординат, является обычной (двусторонней) касательной.Пусть функция f (x) определена в окрестности точки x0 . Эта функция называетсядифференцируемой в точке x0 , если её приращение может быть представлено в видеf (x0 + ∆x) − f (x0 ) = A · ∆x + o(∆x) , ∆x → 0 ,где A — некоторое число, нe зависящее от ∆x.Теорема (необходимое и достаточное условие дифференцируемости функции).