Иванков П.Л. - Конспект лекций по математическому анализу (1081165), страница 9
Текст из файла (страница 9)
еслиϕ(x) ∼ ψ(x), то ψ(x) ∼ ϕ(x), и транзитивности, т.е. если ϕ(x) ∼ ψ(x), а ψ(x) ∼ η(x),то ϕ(x) ∼ η(x); везде x → x0 .В доказательстве здесь нуждается лишь последнее свойство. Пусть функции ϕ(x),ψ(x) и η(x) определены и отличны от нуля в некоторой проколотой окрестности точкиϕ(x)ψ(x)x0 и бесконечно малы при x → x0 . По условию lim= lim= 1. Тогдаx→x0 ψ(x)x→x0 η(x)ϕ(x) ψ(x)ϕ(x)= lim·= 1, т.е.
ϕ(x) ∼ η(x) при x → x0 . Теорема доказана.limx→x0 ψ(x) η(x)x→x0 η(x)Теорема (о необходимом и достаточном условии эквивалентности бесконечно малых). Бесконечно малые ϕ(x) и ψ(x) эквивалентны (при x → x0 ) тогда и только тогда,когда их разность имеет более высокий порядок малости при x → x0 по сравнению скаждой из них.Доказательство. Необходимость. Пусть ϕ(x) ∼ ψ(x) при x → x0 . Требуется доказать, что разность ϕ(x) − ψ(x) имеет более высокий порядок малости при x → x0 посравнению с каждой их функций ϕ(x) и ψ(x).
По определению эквивалентных бесконечноϕ(x)малых имеем lim= 1; по теореме о связи функции, её предела и бесконечно малойx→x0 ψ(x)ϕ(x) − ψ(x)ϕ(x)выполняется равенство= 1 + ε(x), ε(x) → 0 при x → x0 . Отсюда= ε(x).ψ(x)ψ(x)Т.к. ε(x) – бесконечно малая при x → x0 , то ϕ(x) − ψ(x) = o ψ(x) , x → x0 . Аналогичноможно показать, что ϕ(x) − ψ(x) = o ϕ(x) при x → x0 . Необходимость доказана.ϕ(x) − ψ(x)Достаточность.
Пусть ϕ(x) − ψ(x) = o ψ(x) , x → x0 . Тогда= o(1), иψ(x)ϕ(x)= 1 + o(1), x → x0 . Через o(1) обозначают бесконечно малую величину, характерψ(x)стремления которой к нулю неизвестен или не представляет интереса. Из последнегоравенства следует, что ϕ(x) ∼ ψ(x) при x → x0 . К такому же выводу можно прийти,2рассматривая равенство ϕ(x) − ψ(x) = o ϕ(x) , x → x0 . Достаточность доказана. Теоремадоказана.Теорема (об использовании эквивалентных бесконечно малых при вычислении пределов). Пусть f (x) и g(x) — бесконечно малые при x → x0 функции, отличные от нуля внекоторой проколотой окрестности точки x0 , и пусть f (x) ∼ ϕ(x) при x → x0 . Тогда, еслиf (x)ϕ(x)= A, то существует и предел limтакже равный A.существует предел limx→x0 g(x)x→x0 g(x)Доказательство.
Имеем:limx→x0ϕ(x) f (x)ϕ(x)f (x)= lim·= lim=A,g(x) x→x0 g(x) ϕ(x) x→x0 g(x)f (x)= 1. Теорема доказана.x→x0 ϕ(x)Заметим, что при вычислении предела произведения бесконечно малых сомножителитакже можно заменять на эквивалентные.Пусть теперь f (x) и g(x) — бесконечно большие функции при x → x0 . Говорят, чтоэти функции являются бесконечно большими одного порядка (при x → x0 ) еслит.к. limlimx→x0f (x)=C,g(x)(1)Где C — отличное от нуля число.
При этом пишут f (x) = O g(x) , x → x0 . При C = 1бесконечно большие f (x) и g(x) называют эквивалентными и пишут f (x) ∼ g(x), x → x0 .Если в (1) число C равно нулю, то говорят, что g(x) есть бесконечно большая более высокого порядка роста по сравнению с f (x) (а f (x) есть бесконечнобольшая более низкогопорядка роста по сравнению с g(x)) и пишут f (x) = o g(x) , x → x0 . Для бесконечнобольших справедливы аналоги доказанных выше теорем (кроме теоремы о необходимоми достаточном условии эквивалентности бесконечно малых). Как обычно, все рассматриваемые понятия и теоремы можно распространить и на другие предельные процессы(включая односторонние пределы).Пусть ϕ(x) и ψ(x) бесконечно малые при x → x0 .
Если при некотором k бесконечноkмалые ϕ(x) и ψ(x) являются бесконечно малыми одного порядка, то говорят, что ϕ(x)kимеет порядок малости k по сравнению с ψ(x) при x → x0 . Если ϕ(x) ∼ A ψ(x) , гдеkA 6= 0 — некоторое число, то ϕ(x) = A ψ(x) +o (ψ(x))k , x → x0 . В этом случае говорят,kчто выделена главная часть вида A ψ(x) бесконечно малой ϕ(x). Определение порядкамалости и выделение главной части не всегда возможно. В качестве ψ(x) для выделенияглавной части обычно выбирают более простую (или лучше изученную) бесконечно малую.1Например, если x → x0 , то часто берут ψ(x) = x−x0 , а если x → ∞, то полагают ψ(x) = .xАналогичные понятия вводятся и для бесконечно больших функций.
Пусть f (x) и g(x) —бесконечно большие при x → x0 функции. Говорят, что f (x) имеет порядок роста k поkсравнению с g(x), если f (x) и g(x) имеют одинаковый порядок роста при x → x0 . ЕслиkA — ненулевое число, и f (x) = A g(x) + o (g(x))k , x → x0 , то говорят, что у бесконечноkбольшой функции f (x) выделена главная часть вида A g(x) . При x → x0 обычно берут1g(x) =, а при x → ∞ полагают g(x) = x. Как и в случае бесконечно малыхx − x0выделение главной части (и определение порядка роста) не всегда возможно.Примеры. 1.
Функции ϕ(x) = arccos x и ψ(x) = 1 − x бесконечно малы при x → 1−(для ψ(x) это очевидно; равенство lim arccos x = 0 уже рассматривалось выше). Опредеx→1−3лим порядок малости ϕ(x) относительно ψ(x). Имеемarccos xarccos cos t=lim= lim x→1− (1 − x)kt→0+ (1 − cos t)kt→0+limtt1 − 1 − 2 sin22k == limt→0+t2k · sin2kt2.1Ясно, что конечный отличный от нуля предел получается лишь при k = . При этом2значении k имеем√arccos xtlim √= 2.= lim √tx→1−t→0+1−x2 · sin2Для раскрытия последней неопределённости мы воспользовались теоремой о первом замечательном пределе. Итак, ϕ(x) = arccos x есть бесконечно малая порядка 1/2 посравнениюpс ψ(x) = 1 −√x при x → 1−. Из наших вычислений следует также, чтоarccos x = 2(1 − x) + o(p 1 − x), x → 1−.
Если в качестве ψ(x) взять бесконечно малую√√√√1 − x2 , то, поскольку 2(1 − x) ∼ 1 − x2 , arccos x = 1 − x2 + o( 1 − x2 ), x → 1−.При решении некоторых задач это равенство может оказаться удобнее предыдущего.2. Пусть a > 1, и пусть f (x) = ax , g(x) = x. В дальнейшем будет доказано, что при любомaxk имеет место равенство lim k = ∞. Поэтому нельзя определить порядок роста f (x)x→+∞ xотносительно g(x); нельзя также выделить у функции f (x) главную часть вида A · xk приx → +∞.Теорема (о сумме бесконечно малых разных порядков). Пусть ϕ1 (x), . .
. , ϕn (x), ψ(x)— бесконечно малые при x → x0 функции, и пусть ki — порядок малости функций ϕi (x)относительно ψ(x), i = 1, . . . , n, причём числа k1 , . . . , kn попарно различны. Тогда суммаϕ1 (x) + . . . + ϕn (x) эквивалентна при x → x0 слагаемому минимального порядка относительно ψ(x).Доказательство проведём по индукции. При n = 1 нечего доказывать. Пусть принекотором n > 1 утверждение теоремы справедливо, и пусть даны бесконечно малыеϕ1 (x), .
. . , ϕn (x), ϕn+1 (x), ψ(x), удовлетворяющие условиям теоремы. Пусть (для определённости) kn+1 — минимальное среди чисел k1 , . . . , kn , kn+1 , а kn — минимальное средичисел k1 , . . . , kn . Тогда по предположению индукции ϕ1 (x) + . . . + ϕn (x) ∼ ϕn (x), x → x0 .Далее,ϕ1 (x) + . . . + ϕn (x)ϕ1 (x) + . .
. + ϕn (x) + ϕn+1 (x)lim= lim+1 =x→x0x→x0ϕn+1 (x)ϕn+1 (x)ϕn (x)= 1 + lim= 1 + lim (ψ(x))kn −kn+1 .x→x0 ϕn+1 (x)x→x0kn −kn+1Последний предел равен нулю, т.к. ψ(x)→ 0 при kn > kn+1 . Таким образом,ϕ1 (x) + . . . + ϕn (x) + ϕn+1 (x) ∼ ϕn+1 (x) при x → x0 , и по индукции теорема доказана.Аналогичная теорема справедлива и для бесконечно больших функций: сумма бесконечно больших различных порядков эквивалентна слагаемому наивысшего порядка.√√√Пример. √Если x → +∞, то x2 + x + x ∼ x2 , 2x2 + x + 3 x ∼ 2x2 ; поэтомуx2 + x + xx21√√lim=lim=.3x→∞ 2x2 +2x + x x→∞ 2x2Мы пока не располагаем общими методами выделения главной части, поэтому болееподробно на этом способе вычисления пределов не останавливаемся.4кафедра «Математическое моделирование»проф.
П. Л. ИванковМатематический анализконспект лекцийдля студентов 1-го курса 1-го семестравсех специальностей ИУ, РЛ, БМТ (кроме ИУ9)Лекция 9.Непрерывность функции в точке: равносильные определения. Непрерывность суммы, произведения, композиции непрерывных функций.Свойства функций, непрерывных в точке. Односторонняя непрерывность функции.
Непрерывность функции на промежутке (на интервале, полуинтервале и отрезке). Непрерывность основных элементарных функций (док-во для многочлена и синуса). Точки разрывафункций, их классификация.ОЛ-1, пп. 9.1-9.3Пусть X ⊂ R, и пусть на X задана числовая функция f (x). Эта функция называетсянепрерывной в точке x0 ∈ X, если для любого ε > 0 существует число δ = δ(ε) > 0 такое,что при всех x, |x − x0 | < δ, выполняется неравенство |f (x) − f (x0 )| < ε. Если x0 —изолированная точка множества X (т.е у этой точки имеется окрестность, не содержащаяточек множества X, отличных от x0 ), то в соответствии с этим определением функцияf (x) непрерывна в точке x0 . Например, последовательность {xn }, являющаяся, как известно, функцией натурального аргумента, непрерывна в каждой точке области своегоопределения (здесь для произвольного ε > 0 можно взять δ = 1/2). Такая «непрерывность» интереса не представляет.
Мы будем, в основном, применять понятие непрерывности к функциям, заданным на промежутках. Пусть I — промежуток, f : I → R, ипусть x0 ∈ I, причём x0 является внутренней точкой этого промежутка. Очевидно, непрерывность функции f (x) в точке x0 означает, что lim f (x) = f (x0 ). Это равенство вx→x0рассматриваемом случае можно принять за определение непрерывности функции f (x) вточке x0 .
Рассмотрим другой подход к определению непрерывности функции. Пусть сноваx0 — внутренняя точка промежутка I, на котором задана числовая функция f (x). Еслиx0 ∈ I, то приращением аргумента называют разность ∆x = x − x0 ; соответствующимприращением функции называют ∆f (x0 ) = f (x) − f (x0 ) = f (x0 + ∆x) − f (x0 ).
Нетруднопроверить, что для непрерывности функции f (x) при x = x0 необходимо и достаточно,чтобы выполнялось равенствоlim ∆f (x0 ) = 0 .(1)∆x→0В самом деле, если функция f (x) непрерывна при x = x0 , то для любого ε > 0 существуетчисло δ = δ(ε) > 0 такое, что при всех x, |x − x0 | < δ, т.е. при |∆x| < δ, выполняетсянеравенство |f (x) − f (x0 )| < ε, т.е. |∆f (x)| < ε. Это означает выполнение соотношения(1).
Таким образом, условие (1) необходимо для непрерывности функции f (x) в точке x0 .Если же выполнено условие (1), то для любого ε > 0 существует δ = δ(ε) > 0 такое,1что при всех |∆x| < δ, т.е. при |x − x0 | < δ выполняется неравенство |∆f (x0 )| < ε, т.е.|f (x) − f (x0 )| < ε, и по определению функция f (x) непрерывна в точке x0 .