Разобранные ДЗ - Магнитостатика (1077921)
Текст из файла
МГТУ им. Н.Э. Баумана
МАГНИТОСТАТИКА
Разобранные задачи по физике
3 семестр
Редактор: Fozi
ICQ: 1860
Москва, 2002
Задача 2.1
Условие:
Проводник с током, равномерно распределённым по его поперечному сечению и имеющему плотность j, имеет форму трубки, внешний и внутренний радиусы которой равны R0 и R соответственно. Магнитная проницаемость меняется по закону =f(r). Построить графически распределения модулей векторов индукции магнитного поля B и напряжённости магнитного поля H, а также модуля вектора намагниченности J в зависимости от r в интервале от R до R0. Определить поверхностную плотность токов намагничивания i'п на внутренней и внешней поверхностях трубки и распределение объёмной плотности токов намагничивания i'об(r).
Функция =f(r) для чётных вариантов имеет вид: =(R0n+rn)/R0n.
Функция =f(r) для нечётных вариантов имеет вид: =(R0n+rn)/Rn.
Таблица 2.1. Значения параметров R0/R и n в зависимости от номера варианта.
Вариант | R0/R | n |
1 | 2/1 | 1 |
2 | 2/1 | 2 |
3 | 3/1 | 1 |
4 | 3/1 | 2 |
Решение:
Напряженность поля вычислим по теореме о циркуляции вдоль контура l, совпадающего с окружностью радиуса r:
Эта формула будет справедлива для всех вариантов Задачи 2.1 за счёт независимости напряжённости от величины магнитной проницаемости среды.
Вариант 1
По условию:
Вычислим магнитную индукцию по формуле:
Намагниченность материала проводника:
Плотность тока намагничивания:
Записав это выражение в виде определителя в цилиндрических координатах, учитывая осевую симметрию, можно привести его к виду:
Подставив в эту формулу выражение для намагниченности и продифференцировав, получим:
Найдём плотность тока намагничивания на внутренней и внешней поверхностях проводника:
График зависимостей , где r изменяется от
до
Вариант 2
По условию:
Вычислим магнитную индукцию по формуле:
Намагниченность материала проводника:
По теореме о циркуляции намагниченности:
Найдем дифференциал:
Поверхностная плотность тока намагничивания:
Найдем плотность тока намагничивания на внутренней и внешней поверхностях проводника:
График зависимостей , где r изменяется от
до
Вариант 3
По условию:
Вычислим магнитную индукцию по формуле:
Намагниченность материала проводника:
По теореме о циркуляции намагниченности:
Найдем дифференциал:
Поверхностная плотность тока намагничивания:
Найдем плотность тока намагничивания на внутренней и внешней поверхностях проводника:
График зависимостей , где r изменяется от
до
Вариант 4
По условию:
Вычислим магнитную индукцию по формуле:
Намагниченность материала проводника:
По теореме о циркуляции намагниченности:
Найдем дифференциал:
Поверхностная плотность тока намагничивания:
Найдем плотность тока намагничивания на внутренней и внешней поверхностях проводника:
График зависимостей , где r изменяется от
до
Задача 2.2
Условие:
Проводник с током, равномерно распределённым по его поперечному сечению и имеющему плотность j, имеет форму трубки, внешний и внутренний радиусы которой равны R0 и R соответственно. Величина магнитной проницаемости проводника меняется по линейному закону от значения до в интервале радиусов от R до R1 и =const в интервале радиусов от R1 до R0 (R1=(R0+R)/2). Построить графически распределения модулей векторов индукции магнитного поля B и напряжённости магнитного поля H, а также вектора намагниченности J в зависимости от r в интервале от R до R0. Определить поверхностную плотность токов намагничивания i'п на внутренней и внешней поверхностях трубки и распределение объёмной плотности токов намагничивания i'об(r).
Таблица 2.2. Значения параметров , и R0/R в зависимости от номера варианта.
Вариант | | | R0/R |
5 | 2/1 | 2/1 | 2/1 |
6 | 2/1 | 1/2 | 3/1 |
7 | 2/1 | 3/2 | 2/1 |
8 | ½ | 3/1 | 3/1 |
9 | ½ | 1/2 | 2/1 |
10 | ½ | 2/1 | 3/1 |
Решение:
Напряженность поля вычислим по теореме о циркуляции вдоль контура l, совпадающего с окружностью радиуса r:
Эта формула будет справедлива для любых для всех вариантов задачи 2.2 за счет независимости напряженности магнитного поля от величины магнитной проницаемости.
Запишем выражение для магнитной проницаемости проводника:
при
Вариант 5
Вычислим величины магнитных индукций по формуле:
Намагниченность материала проводника:
По теореме о циркуляции намагниченности:
Поверхностная плотность тока намагничивания:
Найдем плотность тока намагничивания на внутренней и внешней поверхностях проводника:
График зависимостей , где r изменяется от
до
(при график ф-ций
имеет излом)
Вариант 6
Вычислим величины магнитных индукций по формуле:
Намагниченность материала проводника:
По теореме о циркуляции намагниченности:
Поверхностная плотность тока намагничивания:
Найдем плотность тока намагничивания на внутренней и внешней поверхностях проводника:
График зависимостей , где r изменяется от
до
(при график ф-ций
имеет разрыв)
Вариант 7
Вычислим величины магнитных индукций по формуле:
Намагниченность материала проводника:
По теореме о циркуляции намагниченности:
Поверхностная плотность тока намагничивания:
Найдем плотность тока намагничивания на внутренней и внешней поверхностях проводника:
График зависимостей , где r изменяется от
до
(при график ф-ций
имеет разрыв)
Вариант 8
Вычислим величины магнитных индукций по формуле:
Намагниченность материала проводника:
По теореме о циркуляции намагниченности:
Поверхностная плотность тока намагничивания:
Найдем плотность тока намагничивания на внутренней и внешней поверхностях проводника:
График зависимостей , где r изменяется от
до
(при график ф-ций
имеет разрыв)
Вариант 9
Вычислим величины магнитных индукций по формуле:
Намагниченность материала проводника:
По теореме о циркуляции намагниченности:
Поверхностная плотность тока намагничивания:
Найдем плотность тока намагничивания на внутренней и внешней поверхностях проводника:
График зависимостей , где r изменяется от
до
(при график ф-ций
имеет разрыв)
Вариант 10
Вычислим величины магнитных индукций по формуле:
Намагниченность материала проводника:
По теореме о циркуляции намагниченности:
Поверхностная плотность тока намагничивания:
Найдем плотность тока намагничивания на внутренней и внешней поверхностях проводника:
График зависимостей , где r изменяется от
до
(при график ф-ций
имеет излом или разрыв)
Задача 2.3
Условие:
По коаксиальному кабелю, радиусы внешнего и внутреннего проводника которого равны R0 и R соответственно, протекает ток I. Пространство между проводниками заполнено магнетиком, магнитная проницаемость которого меняется по закону =f(r). Построить графически распределения модулей векторов индукции B и напряжённости H магнитного поля, а также вектора намагниченности J в зависимости от r в интервале от R до R0. Определить поверхностную плотность токов намагничивания i'п на внутренней и внешней поверхностях магнетика и распределение объёмной плотности токов намагничивания i'об(r). Определить индуктивность единицы длины кабеля.
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.