Печинкин, Тескин, Цветкова и др. - Теория вероятностей (1077486), страница 8
Текст из файла (страница 8)
а ! — число способов, с помощью которых можно заполнить и различных ячеек тв неразличимыми частицами без ограничения на число попавших в каждую ячейку частиц, равно числу С„, сочетаний с повторениями иэ и элементов по тв элементов, Са Си+~а-1' Рассмотрим еще одну часто встречающуюся на практике задачу комбинаторики. Требуется найти число размещений с повторениями ю и элементов по тв элементов, в которых первый элемент встречается ровно тв! раз, второй элемент встречается ровно твт. раз, ...,и-й элемент встречается ровно твв раз (тв! + птэ+ ...тв„= тв). Число таких размещений обозначим С(твм ", тва).
Теорема 2.6. Число С(твт,...,тв„) определяется формулой тв! С(твм...,тв„) = твт!" ит ' м Для нахождения С(твм...,тв„) вычислим сначала число различных способов, с помощью которых можно выбрать первый элемент. Это число равно С '. После определения места, на котором появился первый элемент, вычислим число способов, 2.2. Вычисление неролтностей с помощью формул комбинаторики 53 с помощью которых можно выбрать второй элемент.
Поскольку число мест теперь равно т †то число таких способов равно С~с' ~,. Чисяо способов выбора третьего элемента равно С'л',„ю и т.д. ИспользУЯ тепеРь основнУю фоРмУлУ комбинаторики, получаем С(тм °" ~то) = Ст Ст-тл1 Сш-пц-..;пз„ т! (уп — т1)!... (т - п11 —... — т„1)! т1!(т — т1)! т2!(п1 — т1 — т2) !... т„! О! т! т1!... т„!' Чисяо С(упм...,т„) совпадает с числом способов, с помощью которых можно заполнить п1 разных ячеек и различимыми частицами без ограничения на число попавших в каждую ячейку частиц таким образом, чтобы в первой ячейке находилось т1 ЧаСтИЦ, ВО ВтОРОй — тз ЧаСтИЦ И т.Д., В П-й — то Чаетнп.
Замечание 2.4. Число С(тм...,т„) называют также полиномиальным (мультиномиа ььньем) козЯЯициентом, поскольку оно появляется как коэффициент при х~1' ...х„" в разложении функции (х|+... + х„)'" по степеням хм ..., х„. Пример 2.'Г. Из цифр 1, 2 и 3 случайным образом составляют шестизначное число. Требуется найти вероятность Р(А) того, что в этом числе цифра 1 будут встречаться один раз, цифра 2 — два раза и цифра 3 — три раза. Элементарными исходами опыта являются всевозможные размещения с повторениями из трех элементов по шесть элементов, т.е. Д! = Ав = 3в = 72е 2.
ВЕРОЯТНОСТЬ Число исходов, благоприятствующих данному событию, равно Ил =С(1,2,3) =60. Поэтому Р(А) = — 0,082.;К 60 729 В заключение приведем решение часто встречающейся в приложениях вероятностной задачи, которую формулируют в рамках классической схемы. Пусть имеется и = п1+... +пь различных элементов, причем из них п1 элементов первого типа, пз — второго типа, ..., пав Й-го типа. Случайным образом из этих элементов выбираются т элементов.
Вероятность события А, состоящего в том, что среди выбранных элементов окажется ровно т1 < п1 элементов первого типа, тз < пз второго типа, ..., ть < пь элементов Й-го типа, т1 +... + ттц, = т, обозначают Р(т1,...,ть). Определение 2.4. Рассмотренный способ выбора элементов называют гипергеометрической схемоб а совокупность вероятностей Р(т1,..., ть) в гипергеометрической схеме при фиксированных и, т, и;, 1 = 1, Й, и различных т;, 1 = 1, Й, т1+... + ть = т, называют гипергеометрическим распределе кием. Теорема 2.7. Вероятности Р(т1,...,ть) в гипергеометрической схеме определяют по формуле Ст Спр "" и~ Р(тм...,ть) = и ~ Поскольку порядок выбора элементов не существен, то при определении общего числа элементарных исходов и числа благоприятствующих исходов будем пользоваться формулой для числа сочетаний (см.
теорему 2.3). Общее число элементарных исходов есть число сочетаний из и элементов по т, т.е. С„' . Далее т1 элементов первого типа можно выбрать С„"" ,способами, 2.3, Геометрпчеепое опредеееппе вероптпоети пзз элементов второго типа — С™,' способами, ..., тпв элементов й-го типа — С„",'" способами. При этом любой способ выбора элементов определенного типа можно комбинировать с любыми способами выбора элементов остальных типов. Значит, в силу основной формулы комбинаторики (см. теорему 2.1) число благоприятствующих событию А исходов равно С„","С„,'...Спв'. Поэтому С 'Сев' С"" п1 ве ''' вв п1 и что и доказывает теорему.
> Пример 2.8. Иэ колоды в 36 карт наудачу извлекают 10 карт. Найдем вероятность Р(А) того, что среди выбранных карт окажутся четыре карты пиковой масти, три — трефовой, две — бубновой и одна — червовой. Для этого воспользуемся гипергеометрической схемой, вкоторойп= Зб,п1 =пз =пз = 9, пз1 = 4,пзз = Зпаз = 2,пз4 = 1. Следовательно, С4СзСзС1 Р(А) =Р(4,3,2,1) = ' ' ' ' =0,0001.
У Во многих случаях вычисление вероятности по схеме классической вероятности удобно проводить с помощью условной вероятности, которую мы введем в следующей главе. 2.3. Геометрическое определение вероятности Геометрическое определение вероятности обобщает классическое на случай бесконечного мкожесшеа элеиенпьарных исходов й тогда, когда й представляет собой подмножество пространства К (числовой прямой), йз (плоскости), Ж" (и-мерного евклидова пространства). В пространстве Й в качестве подмножеств будем рассматривать лишь промежутки или их объединения, т.е.
подмножества, которые имеют длину. В пространстве Жз — те подмножества, которые имеют площадь, и т.д. 56 2. ВЕРОЯТНОСТЬ Под мерой р(А) подмножества А будем понимать его длину, площадь или объем (обобщенный объем) в зависимости от того, какому пространству принадлежит Й: в Й, в Йз или в Жз (ж"). Будем также считать, что пространство элементарных исходов Й имеет конечную меру, а вероятность попадания „случайно брошенной" точки в любое подмножество Й пропорциональна мере этого подмножества и не зависит от его расположения и формы.
В этом случае говорят, что рассматривается „геометрическал схема" или „точку наудачу бросают в область Й". Определение 2.6. Вероятпностпью события А называют число Р(А), равное отношению меры множества А к мере множества Й: р(А) р(А) = И(Й)' где р(А) — мера множества А. Данное определение вероятности события принято называть геометприческим опредеяением ееро*тпностпи.
Заметим, что в литературе вероятность события А, определенную выше, на основе геомегпрической схемы, часто называют геометпрической еероягпносгпью. Геометрическая вероятность, очевидно, сохраняет отмеченные ранее свойства вероятности Р(А) в условиях классической схемы. Замечание 2.5. Приведенное определение геометрической вероятности с математической точки зрения не является корректным, поскольку в п-мерном пространстве существуют подмножества, не имеющие меры. Поэтому для строгости необходимо в качестве событий А рассматривать только элементы бореясвской о-алгебры В (см. 1.3), что, впрочем, более чем достаточно для практических потребностей.
Пример 2.9. Ромео и Джульетта договорились встретиться в определенном месте между двенадцатью часами и часом З.З. Геометричесиое оиредеееиие еероетиости 57 дня. Необходимо найти вероятность встречи, если приход ка; ждого из них в течение указанного часа происходит наудачу, причем известно, что Ромео ждет Джульетту ровно 20 минут, а Джульетта Ромео — 5 минут. Для решения задачи воспользуемся геометрической схемой вероятности. Обозначим момент прихода Ромео через х, а Джульетты через р.
Тогда любой элементарный исход ы в данной задаче можно ото- У 60 г0 60 х 0 6 ждествить с некоторой точкой (х; у) на плоскости хОу. ВыРис. 2.1 берем за начало отсчета 12 часов, а за единицу измерения 1 минуту и построим на плоскости хОУ пространство элементарных исходов й. Очевидно, что это будет квадрат со стороной 60 (рис. 2.1).
Событие А (Ромео и Джульетта встретятся) произойдет тогда, когда разность у — х не превысит $1 = 20, а разность х — у не превысит $г = 5, т.е. условие встречи определяет систему неравенств < р — х < 20; х — р < 5. Я = 60г (60-11) (60-1г) 2 2 Тогда, согласно определению 2.5, находим Р(А) = — = ' - 0,36. Яп 3600 Область А элементарных исходов, благоприятствующих этому событию, на рис. 2.1 заштрихована. Ее площадь Ял равна площади квадрата без двух угловых треугольников, т.е. 58 2. ВЕРОЯТНОСТЬ 2.4. Статистическое определение вероятности В основе статистическою определения вероятности лежит общий принцип, в соответствии с которым методы теории вероятностей применимы только к таким испытаниям, которые могут быть, по крайней мере теоретически, повторены бесконечное число раз, и при этом имеет место свойство успюбчввостпи частиот появления связанных с этими испытаниями событий (см.