Главная » Просмотр файлов » Печинкин, Тескин, Цветкова и др. - Теория вероятностей

Печинкин, Тескин, Цветкова и др. - Теория вероятностей (1077486), страница 11

Файл №1077486 Печинкин, Тескин, Цветкова и др. - Теория вероятностей (Печинкин, Тескин, Цветкова и др. - Теория вероятностей) 11 страницаПечинкин, Тескин, Цветкова и др. - Теория вероятностей (1077486) страница 112018-01-10СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 11)

Иэ шести карточек с буквами „Л", „И", „Т", „Е", „Р", „А" выбирают наугад в определенном порядке четыре. Йайдите вероятность того, что при этом получится слово „ТИРЕ". Ответ: Р=1/А4 ~~0,0028. 2.18. Набирая номер телефона, абонент забыл две последние цифры и, помня лишь то, что эти цифры различны, набрал их наугад. Определите вероятность того, что набраны нужные цифры.

О т в е т: Р = 1/Аэю м 0,011. 2.19. При наборе телефонного номера абонент забыл две последние цифры и набрал их наудачу, помня только, что эти цифры нечетные и разные. Найдите вероятность того, что номер набран правильно. Ответ: Р=1/А~~ — — 0,05. 2.20.

Среди 25 экзаменационных билетов пять „хороших". 'Три студента по очереди берут по одному билету. Найдите вероятности следующих событий: А — третий студент взял „хороший" билет;  — все три студента взяли „хороший" билет. Ответ: Р(А) =5/25; Р(В) =1/230 ж0,0044. 2.21. В урне пять белых и четыре черных шара. Из урны в случайном порядке извлекают все находшциеся в ней шары. Найдите вероятность того; что вторым по порядку будет вынут белый шар. Ответ: Р = 5/9 ж 0,56. 2.22. Кодовые комбинации содержат пять различных цифр от 1 до 5.

Какова вероятность того, что цифры в случайным образом выбранной кодовой комбинации образуют последовательность 1, 2, 3, 4, 57 Ответ: Р=1/51-0,0083. 2.23. Иэ урны, содержащей 10 перенумерованных шаров, наугад выбирают один за другим все находюциеся в ней шары. Вопросы и задачи 75 Найдите вероятность того, что все номера вынутьпс шаров будут идти по порядку. Ответ: Р=1/10! 2,8 10 7. 2.24. В шкафу находятся 10 пар ботинок.

Из них наугад выбирают четыре ботинка. Найдите вероятность того, что среди выбранных ботинок отсутствуют парные. О, . Р 24С4/~4 069 2.25. Иэ урны, содержащей шары с номерами 1, 2, ..., 9, пять рэз наугад вынимают шар и каждый рэз возвращают обратно. Найдите вероятность того, что из номеров шаров можно составить возрастающую последовательность. Ответ: Р= Со/9о-0,0021. 2.26.

В лифт семиэтажного дома на первом этаже вопии три человека. Каждый из них случайным образом может выйти на любом из этажей, начиная со второго. Найдите вероятности следующих событий: А — все пассажиры выйдут на четвертом этаже;  — все пассажиры выйдут на одном и том же этаже; С вЂ” все пассажиры выйдут на разных этажах. Ответ: Р(А) = 1/6з п~ 0,0046; Р(В) = 6/бз 0,028; Р(С) = Аз/бз 0 56 2.27.

Какова вероятность того, что в группе из и (и < 365) случайно отобранных студентов хотя бы у двоих окажется один и тот же день рождения? О т в е т: Р = 1 — А~зев/365". 2.28. Найдите вероятность того, что дни рождения 12 случайным образом выбранных человек придутся на разные месяцы года. Ответ: Р=12!/12ш 5,4 10 е. 2.29. Десять студентов договорились о поездке эа город, но не договорились о вагоне.

Любой из студентов наугад может сесть в любой из десяти вагонов поезда. Какова вероятность того, что они все попадут в разные вагоны? Ответ: Р=10!/10'е-0,00036. 2. ВЕРОЯТНОСТЬ 2.30. В отделение связи поступило шесть телеграмм. Телеграммы случайным образом распределяют по четырем каналам, причем каждая телеграмма может быть передана по любому из четырех каналов. Найдите вероятность того, что на первый канал попадут три телеграммы, на второй — две телеграммы, на третий — одна телеграмма и четвертый канал не будет загружен. Ответ: Р = С(3, 2, 1, 0)/44 - 0 23. 2.31.

Чему равна вероятность того,что дни рождения шести наугад выбранных человек придутся в точности на два месяца? О т в е т: Р = С~~з 1((1/6)е — 2(1/12)е] 0,000092. 2.32. В партии из 50 изделий четыре нестандартных. Определите вероятность того, что среди выбранных наугад 10 изделий есть хотя бы одно нестандартное. Ответ: Р=1 — С4С4е/Сзе ю0,60. 2.33. На стелаже в библиотеке стоят 15 учебников, причем пять ю них в переплете. Библиотекарь берет наудачу три учебника. Найдите вероятность того, что хотя бы один из взятых учебников окажется в переплете.

Ответ: Р=1 — С~зС1~е/С~1з 0,74. 2.34. Колоду ю 52 карт случайным образом делят пополам. Найдите вероятность того, что в каждой половине будет по два „туза". Ответ: Р=С4С4з/СД =0,39. 2.35. Какова вероятность того, что среди выбранных наудачу четырех карт из колоды в 52 карты ровно две окажутся трефовой масти? Ответ: Р=С~~Сзз/Сзз 0,39. 2.36. Некто купил карточку „Спортлото 6 из 49" и отметил в ней шесть из имеющихсл 49 номеров. В тираже разыгрываются шесть „выигрышных" номеров. Найдите вероятности Вопросы и задачи следующих событий: Аз — угадано три номера; Аа — угадано четыре номера; Аз — угадано пять номеров; Аз — угадано шесть номеров. Ответ: Р(Аз) = Се~С~д/С$ -0)018. Р(А4) Се~С~аз/С4~9 0)00097 Р(Аз) = Сз~С43/С~а9 118 10 3; Р(Аз) =Сз~С4~3/С49 7,2' 10 3. 2,87.

Из колоды в 32 карты наугад выбирают четыре карты. Найдите вероятности того, что среди них окажется: один „туз" (событие А); хотя бы один „туз" (событие В); хотя бы один „туз" и обязательно „туз пик" (событие С). О т в е т: Р(А) = С4~Сззз/С343 0,36; Р(В) = 1- С4~Сз~з/Сз~з 0,43; Р(С) = С11Сзз1/Сзз --0 125. 2.88. Стержень длиной 1 ломают на три части, причем точки разлома выбирают наудачу.

Найдите вероятность того, что из получившихся частей можно составить треугольник. Ответ: Р= 1/4 =0,25; 2.39. Два приятеля условились встретиться в определенном месте между двумя и тремя часами дня. Пришедший первым ждет другого в течение 10 минут, после чего уходит. Чему равна вероятность встречи приятелей, если приход каждого из них в течение указанного часа может произойти в любое время'? Ответ: Р=11/Зби0,31. 3. УСЛОВНАЯ ВЕРОЯТНОСТЬ.

СХЕМА БЕРНУЛЛИ Рассмотрим события А и В, связанные с одним и тем же опытом. Пусть ю каких-то источников нам стало ювестно, что событие В наступило, но не известно, какой конкретно из элемектаркых исходов, составляющих событие В, произошел. Что можно сказать в этом случае о верояткости события А? Вероятность события А, вычисленную в предположении, что событие В произошло, принято называть условкоб верояткостъю и обозначать Р(А)В). Понятие условной вероятности играет важнейшую роль в современной теории вероятностей. Условная вероятность позволяет учитывать дополнительную информацию при определении вероятности события. В ряде случаев при помощи условной вероятности можно существенно упростить вычисление вероятности. Понятию условной вероятности и посвящена настоящая глава.

3.1. Определение условной вероятности Предположим сначала, что мы находимся в рамках классической схемы. Пусть событиям А и В благоприятствуют Фл и Ин элемектаркых исходов соответственно. Посмотрим, что дает нам имеющаяся информация о событии В. Поскольку событие В произошло, то достоверно известно, что в результате опыта появился один из Ин элементарных исходов, составляющих событие В.

Значит, теперь уже при определении степени возможности события А необходимо выбирать только ю Ив возможных исходов, причем событию А благоприятствуют Жлн исходов, при которых происходят и событие А, и собы- 3.1. Определение упоенной ееролтноотн 79 тие В, или, другими словами, происходит событие АВ. При этом по-прежнему будем считать все ФВ входящих в событие В исходов равновероятными. Поэтому условную веролшмосшь Р(А~В) события А при условии события В в рамках классической схемы вероятности естественно определить как отношение числа МАВ исходов, благоприятствующих совместному осуществлению событий А и В, к числу ИВ исходов, благоприятствующих событию В, т.е.

Р(А~В) = —. Д7АВ Фв Если теперь поделить числитель и знаменатель полученного выражения на общее число Ф элементарных 'исходов, то придем к формуле Р АВ = ФАВ/Ф Р(АВ) Фв/Ф Р(В) Обратимся теперь к статистическому определению вероятности. Пусть и — общее число экспериментов; пА — число экспериментов, в которых наблюдалось событие А; п — число экспериментов, в котрых наблюдалось событие В, пА — число экспериментов, в которых наблюдалось событие АВ. Напомним, что частпотва собышил А — зто отношение ~А гА = П Условной частотпоб собыпмея А при условии, что В произошло (будем обозначать ее тА~В) естественно назвать частоту события А, но только не среди всех повторений опыта и, а лишь среди тех, в которых набшодалось событие В, т.е.

~АВ тА~В пв Последнее выражение можно представить в виде ~АВ пАВ/и гАВ тА)В пв пв/п гв 80 3. УСЛОВНАЯ ВЕРОЯТНОСТЬ. СХЕМА БЕРНУЛЛИ При п ~ оо, согласно определению 2.6 стаатвистиеческоб вероювноствп, гАВ -+ Р(АВ), гн ~ Р(В) и, следовательно, условная частота Р(АВ) гА~В -~ Р(В) т.е. условной вероятностью события А при условии события В естественно назвать число Р(А~В) = Р(АВ)/Р(В). Таким образом, мы пришли к тому же самому выражению, что и в случае классической схемы. На основании изложенного вьппе можно дать следующее определение.

Определение 3.1. Условной вероятпностпью события А при условии (наступлении) события В называют отношение вероятности пересечения событий А и В к вероятности события В: Р(А~В) = Р(В) (3.1) При этом предполагают, что Р(В) ф О. Теорема 3.1. Условная вероятность Р(А~В) обладает всеми свойствами безусловной вероятности Р(А). < Для доказательства достаточно показать, что условная вероятность Р(А~В) удовлетворяет аксиомам 1, 2 и 3 (см. 2.5). Из определения 3.1 следует, что условная вероятность, удовлетворяет аксиоме неотрицательности, так как числитель дроби является неотрицательным числом, а знаменатель — положительным числом. В связи с появлением термина „условнзл вероятность" будем вероятность события называть также безусловной веролпзностью события.

Характеристики

Список файлов книги

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6455
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее