Главная » Просмотр файлов » Главное достоинство дизельных двигателей

Главное достоинство дизельных двигателей (1066369), страница 3

Файл №1066369 Главное достоинство дизельных двигателей (Раздаточный материал к модулю 1 (Двигатели)) 3 страницаГлавное достоинство дизельных двигателей (1066369) страница 32017-12-28СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Рис.1.

1 - малое центральное колесо;

3 - водило;

2 - большое центральное колесо;

4 - сателлиты

Название этого механизма происходит от сателлитов, которые подобно планетам, вращаются относительно своих осей и в то же время вокруг малого центрального колеса (солнца).

Что же так привлекает конструкторов к планетарным механизмам? Здесь можно перечислить несколько пунктов:

1. Все элементы планетарной передачи вращаются относительно общей оси, что делает ее компактной.

2. Планетарные передачи, не смотря на их компактные размеры, могут передавать большие крутящие моменты по сравнению к другим типами передачи. Это объясняется тем, что момент передается несколькими сателлитами планетарной передачи, что позволяет значительно снизить контактные напряжения на поверхностях зубьев при передаче момента.

3. Расположение элементов планетарного ряда позволяет относительно легко организовывать их систему управления (имеется в виду оборудование тормозами и блокировочными муфтами).

4. При удачном выборе кинематической схемы КПД таких передач имеет высокое значение

Основным параметром, определяющим свойства планетарного ряда, является внутреннее передаточное отношение. В общем случае любой планетарный ряд характеризуется шестью внутренними передаточными отношениями. Однако, на практике обычно используется только одно, определяемое как отношение частоты вращения малого центрального к частоте вращения большого центрального колеса при остановленном водиле:

где

1 - индекс малого центрального колеса;

2 - индекс большого центрального колеса;

3 - индекс водила.

В зависимости от того, как вращаются центральные колеса при остановленном водиле, внутреннее передаточное отношение планетарного ряда может быть либо положительным, либо отрицательным. Если они вращаются в одном и том же направлении, то внутреннее передаточное отношение положительное, в противном случае оно отрицательное. Так для простого планетарного ряда, представленного на рис.1, центральные колеса при остановке водила будут вращаться в различных направлениях, и, следовательно, внутреннее передаточное отношение этого ряда - отрицательное.

Все планетарные ряды в зависимости от знака внутреннего передаточного отношения, определенного при остановленном водиле, классифицируются на два класса:

1. Планетарные ряды с положительным внутренним передаточным отношением.

2. Планетарные ряды с отрицательным внутренним передаточным отношением.

Как уже отмечалось, кинематических схем построения планетарных рядов имеется достаточно большое количество. Наиболее известным планетарным рядом для всех автолюбителей является дифференциал (рис.2), без которого не обходится не один современный автомобиль. Наверное, не многие догадываются, что дифференциал есть не что иное, как планетарный ряд.

Рис2.

1 - центральное колесо;

3 - сателлиты

2 - водило;

Отличительной особенностью дифференциала является то, что он имеет центральные колеса одинакового размера, поэтому внутреннее передаточное отношение этого механизма равно -1. Минус, очевидно, означает, что дифференциал относится ко второму классу планетарных механизмов, т.е. при остановленном водиле центральные колеса вращаются в разные стороны.

Рассмотрим другие типы планетарных рядов. На рисунке 3 представлены планетарные ряды, относящиеся к первому классу.

Рис.3

1 - малое центральное колесо;

4 - одновенцовые сателлиты;

2 - большое центральное колесо;

5 - двухвенцовые сателлиты.

3 - водило;

Примеры построения планетарных рядов, относящихся ко второму классу, представлены на рисунке 4.

Рис.4

1 - малое центральное колесо;

4 - сателлиты;

2 - большое центральное колесо;

5 - двухвенцовые сателлиты.

3 - водило;

Планетарные ряды, изображенные на рисунках 3а, 3в, 4б, 4в, построены с использованием двухвенцовых сателлитов. Планетарный ряд, построенный по схеме 4в, носит название несимметричного дифференциала, а ряд, представленный на рисунке 4г называется планетарным рядом со сцепленными сателлитами.

Как видно из приведенных примеров, планетарный ряд можно построить, используя только внутреннее зацепление (рис.3а), только внешнее зацепление (рис.3в и 4г), только конические передачи (рис.2 и 3в) или с использованием внутреннего и внешнего зацеплений (рис.3б, 4а, 4б).

Уравнение, связывающее угловые скорости ( ) трех основных звеньев любого планетарного ряда (не зависимо от схемы построения) выглядит следующим образом:

где

1 - индекс малого центрального колеса;

2 - индекс большого центрального колеса;

3 - индекс водила.

Вы спросите: "А как, все-таки, определить величину внутреннего передаточного отношения планетарного ряда i12?". Нет ничего проще. Модуль этой величины можно легко определить, зная число зубьев шестерен, входящих в состав планетарного ряда. Для планетарных рядов с одновенцовыми и сцепленными сателлитами

где

z1 - число зубьев малого центрального колеса;

z2 - число зубьев большого центрального колеса.

Для планетарных рядов с двухвенцовыми сателлитами эта величина может быть определена следующим образом:

где

zст1 - число зубьев сателлита, сцепленного с малым центральным колесом;

zст2 - число зубьев сателлита, сцепленного с большим центральным колесом.

Таким образом, зная величину внутреннего передаточного отношения, а для конкретного планетарного ряда она постоянна, и имея зависимость, связывающую угловые скорости трех основных звеньев планетарного ряда, можно определить свойства этого механизма.

1. Свойство блокировки планетарного ряда.

Нетрудно показать, что если угловые скорости двух звеньев планетарного ряда равны, то и угловая скорость третьего звена будет равна угловой скорости этих двух звеньев. Пусть, например, 1= 3, тогда

или

т.е. угловые скорости всех звеньев в этом случае равны, и планетарный ряд будет вращаться как одно целое тело. Аналогичный результат можно получить и в двух других случаях, когда 1= 2 и 2= 3. Отсюда вытекает известное свойство блокировки планетарного ряда: если установить блокировочную муфту между любыми двумя звеньями планетарного ряда (рис.5), то при ее включении планетарный ряд будет заблокирован, и его передаточное отношение будет равно 1.

Рис.5

1 - малое центральное колесо;

3 - водило;

2 - большое центральное колесо;

4 - блокировочная муфта

2. Свойство работать в редукторном режиме.

Рассмотрим это свойство на примере планетарного ряда второго класса, т.е. с отрицательным внутренним передаточным отношением (i12<0). Здесь возможны два варианта.

Первый. Пусть большое центральное колесо будет остановлено ( 2=0), водило назначим ведомым звеном планетарного ряда, а малое центральное колесо - ведущим звеном (рис.6а). Тогда в соответствии с (1) передаточное отношение механизма будет определяться следующей зависимостью:

Рис.6

Варианты работы планетарного ряда в режиме редуктора.

т.е. получаем редуктор, передаточное отношение которого на единицу больше внутреннего передаточного отношения самого планетарного ряда.

Второй. Пусть большое центральное колесо будет ведущим звеном планетарного ряда, водило - ведомым звеном, а малое центральное колесо - остановлено, ( =0) (рис.6б). Тогда после небольшого преобразования (1) получим:

т.е. получаем редуктор, передаточное отношение которого близко к единице.

3. Свойство работать в режиме повышающей передачи. Опять-таки, рассмотрим это свойство на примере планетарного ряда второго класса, т.е. с отрицательным внутренним передаточным отношением (i12<0). Здесь также возможны два варианта.

Первый. Пусть большое центральное колесо будет остановлено ( 2=0), водило - ведущим звеном планетарного ряда, а малое центральное колесо - ведомым звеном (рис.7а). Тогда в соответствии с (1) передаточное отношение механизма будет определяться следующей зависимостью:

Рис.7

Варианты работы планетарного ряда в режиме повышающей передачи.

Второй. Пусть большое центральное колесо будет ведомым звеном планетарного ряда, водило - ведущим звеном планетарного ряда, а малое центральное колесо - остановлено ( 1=0) (рис.7б). Тогда в соответствии с (1) передаточное отношение механизма будет определяться следующей зависимостью:

Анализ полученной зависимости показывает, что в этом случае будет получена повышающая передача с передаточным отношением близким к единице.

4. Свойство реверсивности.

Использование этого свойства позволяет организовать передачу заднего хода. Так же, как и в трех предыдущих случаях исследуем возможности реверсивного свойства на примере планетарного ряда второго класса. Здесь возможны, опять-таки два варианта.

Первый. Пусть большое центральное колесо будет ведомым звеном планетарного ряда, водило - остановлено ( 3=0), а малое центральное колесо - ведущим звеном (рис.8а). Тогда в соответствии с (1) передаточное отношение механизма будет равно внутреннему передаточному отношению планетарного ряда:

Характеристики

Тип файла
Документ
Размер
680,46 Kb
Тип материала
Высшее учебное заведение

Список файлов учебной работы

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7029
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее