Главная » Просмотр файлов » Метод конечных элементов (МКЭ)

Метод конечных элементов (МКЭ) (1061795), страница 4

Файл №1061795 Метод конечных элементов (МКЭ) (Метод конечных элементов (МКЭ)) 4 страницаМетод конечных элементов (МКЭ) (1061795) страница 42017-12-28СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

В дальнейшем, для упрощения выкладок будем пользоваться матричной формой записи, не раскладывая равенства покомпонентно.

Рис. 29

В соответствии с (2) для элемента 1 справедливо соотношение или . Из него вектор усилий, действующих на узел 2 со стороны элемента 1, окажется равным .

Аналогично, для элемента 2 будем иметь: или . Из него вектор усилий, действующих на узел 2 со стороны элемента 2 окажется равным .

Аналогично, для элемента 3 будем иметь: или . Из него вектор усилий, действующих на узел 2 со стороны элемента 3 окажется равным .

Подставив полученные выражения в (8), получим:

, откуда:

.

Отсюда видно, что в уравнение равновесия для узла входят компоненты матриц жесткости только тех элементов, которые примыкают к этому узлу. Кроме того, в это уравнение входят перемещения только тех узлов, которые принадлежат элементам, примыкающим к рассматриваемому узлу.

Повторив аналогичные операции для всех узлов конечно-элементной схемы, изображенной на рис.28, получим:

Запишем эту систему в матричной форме:

.

(9)

Введем вектор перемещений узлов конечно-элементной сетки U, компонентами которого являются перемещения по направлению всех степеней свободы системы. Очевидно, этот вектор состоит из блоков - векторов перемещений всех узлов системы: .

Аналогично, введем вектор внешних узловых усилий P, действующих на конечно-элементную схему. Этот вектор также будет состоять из блоков - векторов усилий Рi, действующих на каждый узел системы:

.

Тогда полученная выше система уравнений (9) может быть записана в виде:

KU=P.

(10)

Зависимость (10) устанавливает связь между перемещениями узлов конечно-элементной сетки и приложенными к ним узловыми воздействиями. Зависимость (10) аналогична зависимости (2), но она построена не для отдельного элемента, а для всей конечно-элементной схемы. Матрица К, как и матрица жесткости элемента, связывает перемещения узлов и приложенные к ним воздействия, но не для одного элемента, а сразу для всей системы. Поэтому ее называют матрицей жесткости конечно-элементной схемы или глобальной матрицей жесткости.

Глобальная матрица жесткости - квадратная матрица, размером равным числу степеней свободы системы, имеющая, как видно из (9) блочную структуру.

Из (9) легко заключить, что блок глобальной матрицы жесткости формируется из блоков матриц жесткости элементов е, входящих в конечно-элементную схему, причем представляет собой сумму блоков для тех элементов конечно-элементной схемы, в состав которых входит узел i:

,

(11)

где запись и означает, что элемент е должен принадлежать множеству элементов, в состав которых входит узел i.

Действительно, в рассмотренном примере (рис.21) узел 2 входит в состав трех элементов 1, 2 и 3, значит блок формируется из соответствующих блоков матриц жесткости этих трех элементов путем их прямого суммирования. Но ни один элемент не соединяет, например, узлов 1 и 3, следовательно блок глобальной матрицы жесткости представляет собой нулевую матрицу.

В системе (10) вектор внешних сил Р задается, глобальная матрица жесткости К, как мы только что выяснили, формируется из матриц жесткости элементов, входящих в конечно-элементную сетку. Неизвестными в этой системе являются перемещения узлов сетки, составляющие компоненты вектора U.

Таким образом, после построения вектора внешних нагрузок и формирования глобальной матрицы жесткости конечно-элементной схемы перемещения ее узлов определяются посредством решения системы линейных алгебраических уравнений МКЭ (10).

Легко показать, что в силу симметрии матриц жесткости элементов и в соответствии с (11) глобальная матрица жесткости также будет симметричной.

Рис. 30

Если на перемещения какого-либо из узлов конечно-элементной схемы наложены ограничения (рис.30), то уравнения равновесия для этого узла теряют смысл. Действительно, все приложенные к этому узлу силы, как внешняя нагрузка, так и усилия, действующие со стороны стержней, будут восприниматься опорными связями. Зато, заранее известны перемещения по направлениям закрепленных степеней свободы такого узла. Поэтому, в системе уравнений (10) для тех степеней свободы, на которые наложены ограничения, соответствующие уравнения равновесия заменяются уравнениями, в которых перемещениям присваиваются заданные значения.

На практике глобальная матрица жесткости строится в соответствии с вышеописанной процедурой, без учета ограничений на перемещения, что и было проделано выше. И только после этого, в матрицу и систему уравнений (10) вносятся изменения, позволяющие учесть наличие связей.

Рассмотрим в качестве примера систему, изображенную на рис.1. Очевидно, она имеет 8 степеней свободы.

Предположим, что нам удалось построить матрицы жесткости всех входящих в нее элементов и в соответствии с (11) сформировать из них глобальную матрицу жесткости и систему линейных алгебраических уравнений или .

Поскольку узел 1 закреплен от смещений, все три его перемещения равны нулю. Следовательно, уравнения равновесия первого узла в данной системе (они выражаются матричным равенством ) должны быть заменены условиями равенства нулю перемещений по направлению всех степеней свободы узла 1. Эти условия характеризуются матричным равенством . В результате система разрешающих уравнений МКЭ приобретет вид:

,

где Е - единичная матрица.

При перемножении матриц блоки и должны быть умножены на блок , о котором заранее известно, что он является нулевым. Поэтому над данной системой можно выполнить еще одно преобразование:

Подобная замена не изменит решение системы уравнений, но сделает матрицу симметричной, что выгодно с точки зрения ее хранения в памяти компьютера и решения системы.

В развернутой форме полученная система будет иметь вид:

.

Таким образом, если перемещение по направлению одной из степеней свободы заранее задано равным нулю, все элементы матрицы системы разрешающих уравнений метода конечных элементов в соответствующей данному перемещению строке и столбце с тем же номером задаются равными нулю, за исключением элемента, стоящего на главной диагонали, который задается равным единице. Кроме того, элемент, стоящий в этой строке в векторе свободных членов также задается равным нулю.

В случае, если заданные смещения в узле оказываются равными ненулевым величинам, например, для рассматриваемого случая , , система уравнений метода конечных элементов приобретет следующий вид:

.

Читателю предлагается убедиться в этом самостоятельно.

В результате решения системы уравнений МКЭ определяются все перемещения узлов конечно-элементной схемы. А значит, в формуле (2) для каждого элемента системы становятся известными вектора . Зная их и матрицы жесткости элементов по этой формуле легко определяются усилия, действующие на каждый элемент со стороны узлов (т.е вектора ). Зная их значения, построить эпюры внутренних усилий на элементах не составит труда.

При необходимости определить усилия, действующие на элементы, в локальных системах координат, для каждого элемента следует по формуле (4) осуществить переход от найденных векторов к векторам , и затем, найти искомые усилия (т.е. вектора ) по формуле (6).

На этом расчет системы на узловые воздействия заканчивается. Для получения окончательных значений внутренних усилий в стержнях системы, как уже упоминалось, необходимо сложить полученные от узловых воздействий внутренние усилия с усилиями, определенными при условии закрепления всех узлов (сложить решения задачи 1 и задачи 2).

При решения задачи методом конечных элементов на ЭВМ после задания исходных данных, а именно геометрии стержневой системы, жесткостных характеристик стержней, нагрузок и закреплений, от человека не требуется вмешательства для выполнения каких-либо промежуточных операций, например, создания основной системы или построения вспомогательных состояний. ЭВМ способна автоматически выполнить все вышеописанные процедуры: построение матриц жесткости элементов на основании хранящихся в памяти формул для библиотечных элементов, формирование глобальной матрицы жесткости, решение системы, определение усилий в стержнях элементов.

Алгоритм метода универсален, т.е. не зависит от того, является ли рассматриваемая система статически или кинематически определимой или неопределимой, а также от степени ее статической или кинематической неопределимости. Более того, МКЭ позволяет рассчитывать системы, состоящие не только из стержневых элементов, но и пластинчатых, оболочечных, трехмерных, разнообразных элементов на винклеровском основании и других элементов, матрицы жесткости которых учитываются в глобальной матрице жесткости системы также, как и матрицы жесткости стержневых элементов. Это, в частности, позволяет сразу подвергать расчету весь комплекс “сооружение-фундамент-основание”.

Современные программные комплексы2, как правило, содержат мощные графические средства, позволяющие быстро и легко задать все исходные данные для расчета (препроцессор), а также просмотреть и проанализировать полученные результаты, выполнить подбор сечений стержней или арматуры в соответствии с нормативной документацией (постпроцессор). То есть работа с такими программными продуктами практически осуществляется по принципу “нажми на кнопку - получишь результат”. Тем не менее, при всей развитости и разнообразии препроцессорных и постпроцессорных средств в подобных программных комплексах, в основе их ядра (процессора) лежит программная реализация одного и того же алгоритма - алгоритма метода конечных элементов

Пример расчета стержневой системы методом конечных элементов.

Характеристики

Тип файла
Документ
Размер
1,63 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6310
Авторов
на СтудИзбе
312
Средний доход
с одного платного файла
Обучение Подробнее