Метод конечных элементов (МКЭ) (1061795), страница 2
Текст из файла (страница 2)
Рис. 10
Здесь вводятся обозначения:

Вектора R(e) и U(e) являются блочными, т.е. в них можно выделить блоки и
соответственно, содержащие усилия и перемещения, относящиеся к i-ому узлу элемента. Если узел i - жесткий, то
, если шарнирный, то
. Аналогично выглядят и блоки вектора R(e).
Например, для рассматриваемого элемента (рис.9 и рис.10):
Понятно, что при деформировании элемента в результате смещения одного из его узлов по направлению одной из степеней свободы на узлы элемента должны действовать внешние силы, препятствующие возвращению элемента в недеформируемое состояние. Подобная ситуация может возникнуть, например, при неравномерных осадках в опорах статически неопределимой стержневой системы (рис.12),- реакции, возникшие в опорах, препятствуют возвращению конструкции в недеформированное состояние. В рамках гипотезы линейного деформирования связь между перемещениями узлов элемента и силами, действующими при этом на него, должна быть линейной. Например, с увеличением смещения вдвое, все усилия, действующие на узлы элемента также должны увеличиться вдвое.
Рис. 11
Основной характеристикой конечного элемента является матрица жесткости элемента


Рис. 12
выражающим линейный характер связи между действующими на узлы силаи и узловыми перемещениями. Матрица жесткости элемента играет роль, аналогичную коэффициенту жесткости пружины К, связывающего приложенное к ней усилие R, и вызванное этим усилием перемещение U соотношением (рис.12)
Поскольку вектора и
имеют размерность
, число строк и столбцов в матрице
тоже должно быть равным
:
Введем обозначение - усилие, действующее на узел m элемента e по направлению i, от единичного перемещения узла k этого же элемента е по направлению j при условии, что перемещения по направлению всех остальных степеней свободы в элементе равны нулю. Например,
- усилие, действующее на узел 1 элемента 5 по направлению 1 при единичном перемещении узла 2 этого же элемента 5 по направлению 3, а
- усилие, действующее на узел 1 элемента 3 по направлению 1 от единичного смещения этого же узла по этому же направлению. Последнее значение, как и любое значение
в соответствии с теоремой Клапейрона всегда положительно, аналогично коэффициентам
в уравнениях классического метода перемещений.
Важно четко помнить порядок индексов, стоящих при k. Верхний индекс - это номер элемента. Первые два нижних индекса - направления, причем первый из них - номер направления определяемого усилия, а второй - номер направления, в котором произошло единичное перемещение. Вторые два нижних индекса - номера узлов элемента, причем первый из них - номер узла, в котором определяется усилие, второй - в котором задано единичное перемещение.
Для рассматриваемого элемента (рис.9 и рис.10) матрица жесткости элемента имеет следующий вид:
Легко увидеть, что каждый столбец этой матрицы состоит из усилий, действующих на узлы элемента при единичном смещении по направлению какой-либо из его степеней свободы при условии, что перемещения по направлению остальных степеней свободы равны нулю.
Например, первый столбец представляет собой усилия, действующие на узлы элемента при единичном смещении узла 1 (4-ый индекс при коэффициентах) по направлению 1 (2-ой индекс при коэффициентах) при условии, что перемещения по направлению остальных степеней свободы равны нулю. Второй столбец представляет собой усилия, действующие на узлы элемента при единичном смещении узла 1 (4-ый индекс при коэффициентах) по направлению 2 (2-ой индекс при коэффициентах) при условии, что перемещения по направлению остальных степеней свободы равны нулю (рис.13). И так далее.
Рис. 13
Докажем, что это действительно так, например, для первого стобца матрицы жесткости.Зададим перемещение узла 1 по направлению 1 элемента равным 1, в то время как все его остальные узловые перемещения будем считать равными нулю. В этом случае вектор узловых перемещений приобретает вид:
и равенство (2) становится следующим:
Отсюда:
т.е. компоненты первого столбца матрицы жесткости на самом деле оказались равными компонентам вектора усилий, действующих на узлы элемента при заданном смещении.
Придавая соответствующий вид вектору узловых перемещений, можно выполнить аналогичное доказательство для любого другого столбца матрицы жесткости элемента.
Для рассматриваемого элемента (рис.9) запишем матричное равенство (2) в развернутом виде:
или:
Физический смысл любого из уравнений данной системы очевиден.
Если узел k элемента е получает по направлению j единичное перемещение, то усилие, действующее при этом на узел m по направлению i равно . Если же это перемещение будет равно не единице, а
, то в соответствии с линейным законом связи между усилиями и перемещениями, рассматриваемое усилие увеличится также в
раз и составит
.
Пусть теперь все узлы элемента получают смещения по направлению всех имеющихся у элемента степеней свобод. Тогда, в соответствии с принципом суперпозиций, усилие , т.е. усилие, действующее на какой- либо узел m по какому-либо направлению i, будет представлять собой сумму усилий, вызванных смещениями всех узлов элемента по направлению всех имеющихся степеней свобод (рис.14). Поскольку, как мы только что выяснили, при перемещении какого-либо узла k по направлению j на величину
на узел m по направлению i будет действовать усилие
, суммарное усилие, действующее на узел m по направлению j, будет представлять собой сумму величин
для всех степеней свободы элемента (рис.14).
Рис. 14
Формально это можно записать следующим образом: где t- номер узла, входящего в элемент е, запись означает, что суммирование производится по всем узлам, входящим в элемент е, nt - число степеней свободы в узле t. Причем, nt=2, если узел t - шарнирный, и nt=3, если узел t жесткий.
Как мы уже выяснили, элементы, стоящие на главной диагонали матрицы жесткости элемента должны быть положительными. Кроме того, матрица жесткости элемента должна быть симметричной. Действительно, в соответствии с теоремой взаимности реакций, усилие, действующее на узел m по направлению i, от единичного перемещения узла k этого же элемента по направлению j должно равняться усилию, действующему на узел k по направлению j, от единичного перемещения узла m этого же элемента по направлению i, т.е. .
Аналогично векторам и
матрица жесткости элемента K(e) также является блочной. Она состоит из блоков
, каждый из которых содержит коэффициенты, связывающие перемещения k-го узла элемента и реакции, возникающие при этом, в m-ом узле данного элемента.
Например, для рассматриваемого элемента (рис.9):
Преобразование матрицы жесткости при переходе от одной системы координат к другой.
Обычно матрицу жесткости строят в удобной для данного элемента системе координат, которую принято называть локальной или местной. При переходе от отдельных элементов к системе элементов необходимо осуществить переход от локальных систем координат к общей для всех элементов системе координат, которую принято называть глобальной.
Рис. 15
Пусть известны перемещения какого-либо жесткого узла k элемента в локальной системе координат, оси которой 1` и 2` повернуты на угол относительно осей 1 и 2 глобальной системы координат. Оси 3 и 3`, очевидно, будут совпадать, т.к. в обоих случаях рассматривается одна и та же плоскость (рис.15). Пусть



Из рис.15 следует:
Очевидно, угловое смещение в обоих системах осей координат будет одинаковым, т.е. . Полученные соотношения, связывающие перемещения узла в локальной и в глобальной системах координат, в матричной форме будут выглядеть следующим образом:
Матрица называется матрицей направляющих косинусов для k-го узла. Легко убедиться, что элемент, стоящий в ее i-ой строке и j-ом столбце равен косинусу угла между i-ой осью в локальной системе координат и j-ой осью в глобальной системе координат.
Для шарнирного элемента связь между перемещениями в локальной и глобальной системах осей будет аналогичной: