Главная » Просмотр файлов » А.В. Гармаш, Н.М. Сорокина - Метрологические основы аналитической химии (DOC)

А.В. Гармаш, Н.М. Сорокина - Метрологические основы аналитической химии (DOC) (1060728), страница 3

Файл №1060728 А.В. Гармаш, Н.М. Сорокина - Метрологические основы аналитической химии (DOC) (А.В. Гармаш, Н.М. Сорокина - Метрологические основы аналитической химии (DOC)) 3 страницаА.В. Гармаш, Н.М. Сорокина - Метрологические основы аналитической химии (DOC) (1060728) страница 32019-04-28СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

. (13)

Параметр этой функции характеризует положение максимума кривой, т.е. собственно значение результата анализа, а параметр - ширину "колокола", т.е. воспроизводимость результатов. Можно показать, что среднее является приближенным значением , а стандартное отклонение s(x) - приближенным значением . Естественно, эти приближения тем точнее, чем больше объем экспериментальных данных, из которых они рассчитаны, т.е. чем больше число параллельных измерений n и, соответственно, число степеней свободы f.

Рис. 3. Функция нормального распределения случайной величины x с параметрами =10 и =1.

В предположении подчинения случайной величины x нормальному закону распределения ее доверительный интервал рассчитывается как

. (14)

Ширина доверительного интервала нормально распределенной случайной величины пропорциональна величине ее стандартного отклонения. Численные значения коэффициентов пропорциональности t были впервые рассчитаны английским математиком У.Госсетом, подписывавшим свои труды псевдонимом Стьюдент, и потому называются коэффициентами Стьюдента. Они зависят от двух параметров: доверительной вероятности P и числа степеней свободы f, соответствующего стандартному отклонению s(x).

Причина зависимости t от P очевидна: чем выше доверительная вероятность, тем шире должен быть доверительный интервал с тем, чтобы можно было гарантировать попадание в него значения величины x. Поэтому с ростом P значения t возрастают. Зависимость t от f объясняется следующим образом. Поскольку s(x) - величина случайная, то в силу случайных причин ее значение может оказаться заниженным. В этом случае и доверительный интервал окажется более узким, и попадание в него значения величины x уже не может быть гарантировано с заданной доверительной вероятностью. Чтобы "подстраховаться" от подобных неприятностей, следует расширить доверительный интервал, увеличить значение t, причем тем больше, чем менее надежно известно значение s, т.е. чем меньше число его степеней свободы. Поэтому с уменьшением f величины t возрастают.

Коэффициенты Стьюдента для различных значений P и f приведены в табл. 1 (приложение). Полезно проанализировать ее и обратить внимание на отмеченные закономерности в изменении величин t в зависимости от P и f.

Если единичные значения x имеют нормальное распределение, то и среднее тоже имеет нормальное распределение. Поэтому формулу Стьюдента для расчета доверительного интервала можно записать и для среднего:

. (15)

Величина меньше, чем s(x) (среднее точнее единичного). Можно показать (с. 31), что для серии из n значений . Поэтому доверительный интервал для величины, рассчитанной из серии n параллельных измерений, можно записать как

, (16)

где f=n-1, а величины и s(x) рассчитывают по формулам (9) и (11).

Пример 1. Для серии значений объемов титранта, равных 9.22, 9.26, 9.24 и 9.27 мл, рассчитать среднее и доверительный интервал среднего при P=0.95.

Решение. Среднее значение равно мл. Стандартное отклонение равно

= 0.0222 мл. Табличное значение коэффициента Стьюдента t(P=0.95, f=3)=3.18. Доверительный интервал составляет = 9.2480.035 = 9.250.04 мл (полученный результат округляем так, чтобы полуширина доверительного интервала содержала только одну значащую цифру).

При расчете доверительного интервала встает вопрос о выборе доверительной вероятности P. При слишком малых значениях P выводы становятся недостаточно надежными. Слишком большие (близкие к 1) значения брать тоже нецелесообразно, так как в этом случае доверительные интервалы оказываются слишком широкими, малоинформативными. Для большинства химико-аналитических задач оптимальным значением P является 0.95. Именно эту величину доверительной вероятности (за исключением специально оговоренных случаев) мы и будем использовать в дальнейшем.

Подчеркнем еще раз, что величина доверительного интервала сама по себе позволяет охарактеризовать лишь случайную составляющую неопределенности. Оценка систематической составляющей представляет собой самостоятельную задачу.

Систематическая погрешность: общие подходы к оценке

Оценка правильности результатов анализа - проблема значительно более трудная, чем оценка воспроизводимости. Как видно из предыдущих разделов, для оценки воспроизводимости достаточно иметь только серию параллельных результатов измерения. Для оценки же правильности необходимо сравнение результата измерения с истинным значением. Строго говоря, такое значение никогда не может быть известно. Однако для практических целей можно вместо истинного использовать любое значение, систематическая погрешность которого пренебрежимо мала. Если при этом и случайная погрешность также пренебрежимо мала, то такое значение можно считать точной величиной (константой) и постулировать в качестве истинного. Величина, принимаемая за истинное значение, называется действительной величиной и обозначается a.

Важнейшие способы получения информации о действительном (или, по крайней мере, не содержащем систематической погрешности) значении содержания определяемого компонента в анализируемом образце состоят в следующем.

1. Данные независимого анализа. Образец анализируют повторно, используя другую методику анализа, о которой известно (из опыта практического применения), что она не содержит систематической погрешности. При этом важно, чтобы такая методика была действительно независима от проверяемой, т.е. чтобы она по возможности принадлежала к другому методу и не содержала общих операций пробоподготовки. Еще лучше, если такой сравнительный анализ проводят в другой лаборатории, особенно официально аккредитованной.

2. Способ "введено - найдено". В этом случае аналитик сам готовит для анализа образец с известным содержанием определяемого компонента. Полученный результат ("найдено") сравнивают с заданным содержанием ("введено").

3. Использование стандартных образцов. В качестве объекта анализа выбирают подходящий СО, а данные о содержании определяемого компонента берут из паспорта СО.

После получения тем или иным способом независимых данных о содержании определяемого компонента их необходимо сравнить с результатами, полученными с помощью проверяемой методики. Эта задача тоже далеко не так проста и требует отдельного рассмотрения.

Сравнение результатов анализов. Значимое и незначимое различие случайных величин

Вспомним еще раз, что любой результат измерения (в том числе среднее значение) представляет собой, вообще говоря, случайную величину. Поэтому численное различие двух результатов может быть вызвано случайными причинами и вовсе не свидетельствовать о том, что эти результаты действительно разные. Так, если результаты титрования двух аликвот равны, к примеру, 9.22 и 9.26 мл, то из этого нельзя заключить, что они имеют разный состав, поскольку случайная погрешность измерения объемов титранта составляет несколько сотых миллилитра (см. пример 1 на с. 14).

Подобное различие случайных величин, которое (при некоторой доверительной вероятности) может быть обусловлено только случайными причинами, в математической статистике называется незначимым. Очевидно, что если две величины различаются незначимо, то их можно рассматривать как два приближенных значения одного и того же, общего результата измерения. Напротив, значимое, т.е. превышающее уровень случайных погрешностей, различие свидетельствует о том, что соответствующие величины представляют собой два действительно разных результата. Естественно, различие можно считать значимым только тогда, когда оно достаточно велико. Граница, отделяющая значимые различия от незначимых, называется критической величиной. Ее можно рассчитать с помощью методов теории вероятностей.

Таким образом, задача сравнения результатов химического анализа состоит в том, чтобы выяснить, является ли различие между ними значимым. Сравнивать данные химического состава (и, шире, - любые экспериментальные данные) по обычным арифметическим правилам недопустимо! Вместо этого следует применять специальные приемы, называемые статистическими тестами или критериями проверки статистических гипотез. С некоторыми простейшими и в то же время наиболее важными для химика-аналитика статистическими тестами мы сейчас познакомимся.

Сравнение среднего и константы: простой тест Стьюдента

Вернемся к задаче проверки правильности результата химического анализа путем сравнения его с независимыми данными. Проверяемый результат, являясь средним из нескольких параллельных определений, представляет собой случайную величину . Результат же, используемый для сравнения, в ряде случаев можно считать точной (действительной) величиной a, т.е. константой. Это может быть тогда, когда случайная погрешность результата, используемого для сравнения, намного меньше, чем проверяемого, т.е. пренебрежимо мала. Например, в способе "введено-найдено" введенное содержание определяемого компонента обычно известно значительно точнее, чем найденное. Аналогично, при использовании СО паспортное значение содержания также можно считать точной величиной. Наконец, и при анализе образца независимым методом содержание компонента может быть определено с точностью, намного превышающей точность проверяемой методики, например, при проверке атомно-эмиссионной методики с помощью гравиметрической (о типичных величинах случайной погрешности различных методов см. с. 9). Во всех этих случаях задача сравнения данных с математической точки зрения сводится к проверке значимости отличия случайной величины от константы a.

Для решения этой задачи можно использовать уже известный нам подход, описанный выше (с. 13) и основанный на интервальной оценке неопределенности величины . Доверительный интервал для среднего, рассчитанный по формуле Стьюдента (16), характеризует неопределенность значения , обусловленную его случайной погрешностью. Поэтому если величина a входит в этот доверительный интервал, утверждать, что различие между и a значимо, нет оснований. Если же величина a в этот интервал не входит, различие между и a следует считать значимым. Таким образом, полуширина доверительного интервала, равная , является критической величиной для разности : различие является значимым, если

> . (17)

Характеристики

Тип файла
Документ
Размер
1,12 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6439
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее