Лекции 1-17 (1043960), страница 16
Текст из файла (страница 16)
С легирующими элементами стали азот также образует нитриды, часто значительно более стойкие, чем нитриды железа. Особенно стойкими в области высоких температур являются нитриды кремния и титана.
Равновесная растворимость азота в железе сильно зависит от температуры (см. рис. 9.6, б). По мере ее роста в интервале существования феррита растворимость азота увеличивается, а в интервале существования аустенита снижается вследствие снижения парциального давления азота в связи с образованием твердых нитридов по аналогии со снижением растворимости водорода в титане (см. рис. 9.7). В этом интервале кривые зависимости равновесной растворимости от температуры претерпевают скачкообразные
изменения в моменты полиморфных превращений железа и при переходе его из твердого состояния в жидкое. При снижении температуры растворимость азота изменяется по тем же законам. В период кристаллизации азот, выделяющийся из металла, может вызвать порообразование. Несмотря на малую степень диссоциации азота в зоне столба дуги (см. рис. 8.9, а), а также ионизации (см. рис. 8.9, б), азот в металле шва присутствует в значительном количестве, что объясняется большим содержанием его в атмосфере и спецификой его поведения в зоне сварки.
Исследования процесса насыщения металла азотом показали, что возможны следующие пути его протекания.
1. Диссоциированный азот непосредственно растворяется в жидком металле капель. При последующем охлаждении металла образуются нитриды железа. Роль этого процесса мала, так как степень диссоциации при сварке незначительна.
2. Диссоциированный азот образует в высокотемпературной области дугового разряда (см. рис. 9.1) окись азота NO, которая растворяется в каплях. При температурах металла ниже 3300 К окись азота диссоциирует на поверхности сварочной ванны, при этом атомарный азот, вступая во взаимодействие с железом, образует нитриды железа, а кислород – оксиды железа. Термодинамическим расчетом и экспериментом (см. рис. 9.5) подтверждено, что последний вариант (с участием кислорода) наиболее вероятен.
3. Диссоциированный азот непосредственно образует с диссоциированным кислородом в области высоких температур стойкие нитриды, которые, растворяясь согласно закону Сивертса в жидком металле капли, насыщают его азотом. В этом случае по мере охлаждения металла сварочной ванны из раствора может выделиться атомарный азот, который, вступая во взаимодействие с железом, образует нитриды железа.
Рис. 9.11. Влияние концентрации азота в углеродистой стали на ее механичес-
кие свойства


Итак, для углеродистых и низколегированных сталей азот – нежелательная примесь в металле шва, особенно при действии на него динамической нагрузки. При сварке легированных сталей осуществляют микролегирование азотом с целью частичной замены углерода и увеличения пластичности и прочности сталей. Азот, как и углерод, образует твердый раствор внедрения, т. е. является сильным упрочнителем, но в отличие от углерода не образует карбидов, которые при нагреве растворяются в стали. Нитриды железа более термостойки, чем Fe3C.
При сварке деталей из высоколегированных сталей аустенитного класса азот вводится специально, так как он повышает устойчивость аустенита и выступает как легирующая добавка, способная заменить некоторое количество углерода и никеля. В таких сталях азот устраняет явление транскристаллизации и улучшает механические свойства, а также может вызвать и эффект упрочнения чугуна.
В условиях сварки деталей из меди азот применяют в качестве инертного защитного газа, не взаимодействующего с медью.
Влияние водорода на свойства стали
Водород может оказывать на металл двоякое влияние: с одной стороны, он защищает его от насыщения кислородом и азотом, предупреждает окисление (связывая кислород), восстанавливает при известных условиях металл из оксидов, препятствует образованию нитридов железа (см. рис. 9.5); с другой стороны, водород растворяется в металле и становится причиной появления существенных дефектов в шве – пористости и трещин.
Металлы, растворяющие водород, делятся на две группы:
– металлы (Fe, Ni, A1, Со, Сu, Mo и др.), не образующие химических соединений с водородом;
– металлы (Zr, Ti, V, Та, Th и др.), образующие твердые растворы и химические соединения с водородом (гидриды).
Атомарный водород растворяется как в твердом, так и в жидком железе. Как следует из рис. 9.6, б, растворимость водорода в железе с повышением температуры растет и изменяется скачкообразно в моменты полиморфных превращений. При переходе железа из твердого состояния в жидкое наблюдается резкое возрастание растворимости водорода, достигающей максимального значения при температуре 2700 К. Таким образом, наиболее значительное насыщение металла водородом при сварке происходит в процессе формирования и переноса капель с электрода в сварочную ванну.
Рис. 9.12. Влияние температуры и парциального давления водорода в газовой фазе на его растворимость в жидком железе (кривые 1, 2, 3, 4 – для значений соответственно 10–1, | Рис. 9.13. Зависимость растворимости водорода в жидких металлах от концентрации в нем кислорода при темпера-туре, близкой к температуре |
Степень насыщения жидкого металла водородом зависит от наличия в газовой среде элементов, способных связывать водород в химические соединения, не растворимые в жидком металле и тем самым снижающие его парциальное давление в газовой среде. Так, образование в газовой среде соединений OH и HF, не растворимых в жидком металле, снижает насыщенность металла водородом.
Кроме того, весьма существенным является парциальное давление водорода в газе, контактирующем с металлом. Об этом свидетельствуют представленные на рис. 9.12 зависимости растворимости водорода в металле от температуры среды при разном его парциальном давлении в газовой среде.
Находясь в окисленном жидком металле, водород взаимодействует с кислородом по реакциям:
(квадратными скобками обозначены газы, растворенные в металле). Поэтому наличие в металле кислорода ограничивает концентрацию в нем водорода. На рис. 9.13 приведены данные о совместном растворении водорода и кислорода в жидких металлах: железе, меди и никеле. Как следует из рисунка, даже при незначительной окисленности жидкого металла резко снижается содержание в нем водорода.
Насыщение водородом жидкого металла отрицательно сказывается на его свойствах. При достаточно быстром охлаждении металла сварочной ванны не весь растворенный в ней водород успевает выделиться. Особенно много водорода задерживается при снижении температуры превращения γ – α. Оставшийся в металле атомарный водород задерживается в ветвях зарождающихся и растущих дендритов, у поверхности кристаллов, у мест расположения посторонних включений, а также в микронесплошностях – скоплениях дислокаций и других дефектах кристаллического строения. В этих местах атомы водорода соединяются в молекулы. Поэтому парциальное давление атомарного водорода в районе дефектов резко снижается, вследствие чего он продолжает диффундировать в том же направлении. Непрерывно образующийся молекулярный водород создает значительные давления, так как сам он не диффундирует через металл и практически не растворим в нем. Кроме того, водород может окисляться и образовывать водяной пар, который в металле не растворяется. В связи с тем что давление направлено во все стороны, в металле возникает объемное напряженное состояние, приводящее к снижению его пластических свойств, а иногда – к хрупкому разрушению и закалочно-водо-родным трещинам.
Следовательно, хотя водород и не образует с металлом шва соединений, отрицательно влияющих на прочность сталей, он усиливает вредное влияние макро- и микронесплошностей, способствует резкому снижению пластических свойств и хрупкому разрушению закаленных сталей.
Влияние СО2, СО и паров Н2О на свойства стали
Оксиды углерода CO2 и CO в тех или иных количествах всегда есть в газовой среде. Степень диссоциации и окислительная способность CO2 при температурах дугового разряда весьма значительны (см. рис. 9.1). В отличие от CO2 окись углерода СО не диссоциирует в дуговом разряде. Кроме того, CO не растворяется в жидком металле и поэтому непосредственной опасности для него не представляет. В то же время СО может создавать защитную атмосферу у поверхности жидкого металла, связывая кислород по реакции
Окись углерода может непосредственно образовываться и при сварке угольным электродом, создавая достаточную газовую защиту. Иную роль играет окись углерода, образующаяся в самом металле при взаимодействии углерода с кислородом или углерода с оксидами металлов. В этом отношении наиболее характерна реакция между углеродом и закисью железа:
Наблюдающееся кипение металла (выделение пузырей образующейся окиси углерода) способствует удалению посторонних включений. Однако если в металле шва в момент его кристаллизации нет нужных раскислителей (например, Si, Mn), способных
подавить реакцию дальнейшего образования окиси углерода, то кипение металла сварочной ванны может продолжаться до окончания кристаллизации и привести к нежелательному снижению содержания углерода, а также к образованию пор в металле шва.
Пары воды диссоциируют в зоне столба дуги полностью на водород и кислород. Их влияние на свойства стали при сварке описано в разд. 9.2.3 и 9.2.1.
Итак, состав газовой среды в зоне столба дуги и степень активности ее компонентов при сварке плавлением позволяет сделать общий вывод о необходимости защиты жидкой фазы сварочной ванны (стали) от контакта с воздухом и тщательной металлургической обработки ее для получения качественного сварного соединения.
Влияние атмосферных газов на свойства цветных металлов
М едь при взаимодействии с кислородом дает стабильный оксид Cu2O, растворимый в жидкой меди: