Раздел III (1043227), страница 2
Текст из файла (страница 2)
Если распределение размеров в пределах одной группы отвечает нормальному закону, то для всей совокупности деталей оно может отличаться в силу влияния систематической закономерно изменяющейся погрешности (по Хср).
Так, при изменении Хср оп закону прямой, наклоненной к оси абсцисс под углом (от размерного износа инструмента) распределение размеров деталей во всей совокупности будет характеризоваться плосковершинной кривой (см. Диаграмму). След-но, в этом случае можно установить влияние систематических законоизменяющихся погрешностей на общую погрешность обработки , если известен угол наклона Хср к оси абсцисс (угол ).
Недостатки метода:
1. при наличии несколько закономерно изменяющихся систематических погрешностей они не разделяются, а их влияние на суммарную погрешность оценивается комплексно.
2. для проведения таких исследований требуется сравнительно большое число наблюдений.
В. Метод корреляционного анализа.
В технологии машиностроения иногда расчет точности затруднены из-за отсутствия явно выраженной связи между отдельными погрешностями, носящими случайный характер.
В этом случае применяют метод корреляционного анализа, который и позволяет выявить эту связь. Корреляционный анализ нельзя применять там, где нет физической взаимосвязи исследуемых явлений. Наличие корреляционных связей м.б. выявлено путем построения графика, по осям которого отложены сопоставляемые факторы:
свидетельствует об отсутствии корр-ой связи:
свидетельствует о наличии корр-ои связи:
Для количественной оценки наличия корр-ых связей проводят анализ в определенной последовательности и находят коэф.корреляции (ryx):
№ | X | Y | Xi-Xср | Yi-Yср | (Xi-Xср)( Yi-Yср) | Коэфф.корреляции ryx |
1 | 35,42 | 30,12 | 0.82 | 0.07 | ||
2 | 35,28 | 30,01 | ||||
… | … | … | … | … | ||
N | Xср=35,25 | Yср=29,95 | x | y |
В рез-те определяем к-т корреляции:
ryx изменяется от 0 до ± 1. Если ryx близок к 1, то существует прямолинейная связь между у и х:
ryx
При ryx=0 корреляционная связь (прямолинейная) пропадает, однако возможна криволинейная корреляция.
Если между величинами х и у установлена прямолинейная корреляционная связь, то зависимость у от х может быть выражена ур-ием :
Если b=0, то погрешность обработки, полученная на предшествующей операции, полностью устраняется на выполняемой операции.
При b=1 погрешность не устраняется.
Если 0<b<1 , то имеет место частичное устранение погрешности предшествующей обработки.
Точность выполнения технологических операций можно анализировать также по нарастающим отклонениям р-ров от средней арифметической ( метод проф А.Зыкова).