РПЗ (1027820), страница 2
Текст из файла (страница 2)
λ
λ
Рабочими для системы являются состояния с 0 по 2, состоянием отказа системы является состояние 3.
1.2.3. Расчет основных характеристик системы
Система дифференциальных уравнений, соответствующая графу состояний системы, имеет вид:
Начальные условия для системы дифференциальных уравнений:
P0(0)=1
P1(0)=0
P2(0)=0
P3(0)=0
При расчете методом дифференциальных уравнений, после применения прямого преобразования Лапласа при начальных условиях система примет вид:
Из этой системы получим Рi(t):
После применения обратного преобразования Лапласа система примет вид:
Вероятность безотказной работы системы
Функцию вероятности нахождения системы в рабочем состоянии, в силу наличия одного состояния отказа и нормировочного условия, можно записать следующим образом:
Pсист = P0(t)+P1(t)+P2(t) = 1-P3(t)
Для заданных значений t = 4 ч и = 0.8 1/ч Pсист = 0.380.
Зависимость вероятности безотказной работы P(t) от времени работы для разных значений интенсивности отказа элементов λ представлена на графике:
Зависимость вероятности безотказной работы P(t) от интенсивности отказа элементов λ представлена на графике:
Среднее время безотказной работы
Среднее время безотказной работы рассчитывается по формуле:
Для заданного значения λ=0.8 1/ч и λ0=0.4 1/ч среднее время безотказной работы mt = 3.750ч.
Зависимость среднего времени безотказной работы mt от интенсивности отказов элементов λ приведена на графике:
1.3.4. Выводы
-
Вероятность безотказной работы системы изменяется по экспоненциальному закону с течением времени.
-
При увеличении времени работы системы вероятность ее безотказной работы уменьшается.
-
При увеличении интенсивности отказов элементов вероятность безотказной работы системы за один и тот же промежуток времени уменьшается.
-
Для заданных значений интенсивности отказов λ = 0.8 1/ч и времени t = 4 ч вероятность безотказной работы системы Pсист = 0.380.
-
Для заданного значения интенсивности отказов λ = 0.8 1/ч среднее время безотказной работы mt составляет 3.750 ч, что ниже заданного t = 4 ч. Т.о. с вероятностью 0.380 к заданному времени система будет находится в работоспособном состоянии.
1.4. Сравнение характеристик невосстанавливаемых резервированных систем с целой кратностью
Сопоставление систем удобно провести с помощью сравнительных графиков.
Зависимость вероятностей безотказной работы от времени работы для разных типов систем представлена на графике:
Зависимость вероятностей безотказной работы от интенсивности отказа элементов λ для разных типов систем представлена на графике:
Зависимость среднего времени безотказной работы mt от интенсивности отказов элементов λ для разных типов систем приведена на графике:
Точные характеристики надежности систем для заданных значений t = 4 ч, λ = 0.8 1/ч, λ0 = 0.4 1/ч приведены в таблице:
Невосстанавливаемая резервированная система с целой кратностью | |||
с нагруженным резервом | с частично нагруженным резервом | с ненагруженным резервом. | |
Вероятность безотказной работы системы P(t) | 0.117 | 0.184 | 0.380 |
Среднее время безотказной работы системы mt, ч | 2.292 | 2.708 | 3.750 |
Выводы
Лучшими показателями надежности из рассмотренных систем с целой кратностью обладает система с ненагруженным резервом. Для заданных условий система с частично нагруженным резервом по показателям надежности превосходит систему с нагруженным резервом. Также необходимо отметить, что при интенсивности отказов резервных элементов λ меньше интенсивности отказов резервных элементов λ0 = 0.4 1/ч система с нагруженным резервом превосходит систему с частично нагруженным резервом по показателям надежности.
2. Восстанавливаемая резервируемая система с целой кратностью при ограниченном ремонте
2.1. Система с нагруженным резервом
2.1.1. Расчетно-логическая схема
Считается, что для работы системы необходимо пять работающих элемента. При выходе из строя рабочего элемента системы и при наличии элемента, находящегося в горячем резерве, этот элемент переводится в рабочее состояние.
2.1.2. Граф состояний системы
В качестве состояния системы выберем количество неисправных элементов. Будем считать, что в системе имеется только одно восстанавливающее устройство. Тогда граф состояний системы примет вид:
Рабочими для системы являются состояния с 0 по 3, состоянием отказа системы является состояние 4.
2.1.3. Расчет основных характеристик системы
Для определения вероятности безотказной работы системы составим систему дифференциальных уравнений, соответствующую графу состояний, запретив переход из отказового состояния 4 предотказовое состояние 3.
Начальные условия для системы дифференциальных уравнений:
P0(0)=1
P1(0)=0
P2(0)=0
P3(0)=0
P4(0)=0
При расчете методом дифференциальных уравнений, после применения прямого преобразования Лапласа при начальных условиях система примет вид:
Система дифференциальных уравнений в матричном виде будет иметь вид:
Отсюда имеем:
Таким образом:
Вероятность безотказной работы системы
Для определения вероятности безотказной работы необходимо применить к системе обратное преобразование Лапласа и подставить заданные значения для интенсивности отказов λ, интенсивности восстановления μ и времени работы t.
После обратного преобразования Лапласа система примет вид:
Функцию вероятности нахождения системы в рабочем состоянии, в силу наличия одного состояния отказа и нормировочного условия, можно записать следующим образом:
Pсист = P0(t)+P1(t)+P2(t)+P3(t)= 1-P4(t)
Для заданных значений t = 4 ч, = 0.8 1/ч и μ = 0.05 1/ч Pсист = 8.46065·10-6.
Зависимость вероятности безотказной работы P(t) от времени работы системы представлена на графике:
Из полученного графика видно, что с увеличением времени работы системы вероятность нахождения системы в рабочем состоянии падает.
Зависимость вероятности безотказной работы P(t) от времени работы системы t для различных значений интенсивности отказа элементов λ представлена на графиках:
λ = 0.6
λ = 0.8
λ = 1.0
Как видно из графиков, увеличение интенсивности отказов влечет за собой уменьшение вероятности безотказной работы системы.
Зависимость вероятности безотказной работы P(t) от времени работы системы t для различных значений интенсивности восстановления элементов μ представлена на графиках:
μ = 0.0005
μ = 0.05
μ = 5
Как видно из графиков, увеличение интенсивности восстановления влечет за собой увеличение вероятности безотказной работы системы.
Среднее время безотказной работы
Среднее время безотказной работы рассчитывается по формуле:
Для заданных значений t = 4 ч, = 0.8 1/ч и μ = 0.05 1/ч среднее время безотказной работы mt = 0,799ч.
Зависимость среднего времени безотказной работы mt от интенсивности отказов элементов λ для μ = 0.05 приведена в таблице:
λ | mt |
0.6 | 1.068 |
0.8 | 0.799 |
1.0 | 0.638 |
Зависимость среднего времени безотказной работы mt от интенсивности восстановления элементов μ для λ = 0.8 приведена в таблице:
μ | mt |
0.0005 | 0.793 |
0.05 | 0.799 |
5 | 1.939 |
Коэффициент готовности
Нахождение коэффициента готовности Кг системы можно осуществить двумя способами - путем составления дифференциальных уравнений на основании графа состояния системы и методом Половко.
Нахождение Кг методом дифференциальных уравнений
Для графа состояний рассматриваемой системы система дифференциальных уравнений имеет вид:
Начальные условия для системы дифференциальных уравнений:
P0(0)=1
P1(0)=0
P2(0)=0
P3(0)=0
P4(0)=0
Если предположить, что потоки стационарны, то есть и
,
= const, то можно получить следующую систему:
Тогда, исключая, например, четвертую строку как линейно зависимую от трех первых и пятой, можно получить следующую систему уравнений:
Система дифференциальных уравнений в матричном виде будет иметь вид:
Отсюда имеем: