Диссертация (1025160), страница 20
Текст из файла (страница 20)
Petersen B., Wolff S. Numerical Simulations of Possible Fault Conditions inthe Cryogenic Operation of the TTF/FEL and Tesla Linear Accelerators //ProceedingsoftheEighteenthInternationalCryogenicEngineeringConference. New Delhi : Narosa Publishing House, 2000. P.
67–70.57. Regier C., Pieper J., Matias E. Dynamic modeling of a liquid helium cryostatat the Canadian Light Source // Cryogenics. 2010. Vol. 50, no. 2. P. 118–125.58. Dynamic Modeling and Simulation of Liquid Helium Level in SRFCryomodule for BEPCII / F. Y. Xu [et al.] // Advances in CryogenicEngineering:Transactions of the Cryogenic Engineering Conference.Vol. 823 51.
Melville : AIP, 2006. P. 1203–1210.59. Luyben W. L. Plantwide Dynamic Simulators in Chemical Processing andControl. 1st edition. Boca Raton : CRC Press, 2002. 448 p.60. Multivariable control architecture for a cryogenic test facility under highpulsed loads: Model derivation, control design and experimental validation /F.
Clavel [et al.] // Journal of Process Control.2011.Vol. 21, no. 7.P. 1030–1039.61. Modeling of the very low pressure helium flow in the LHC cryogenicdistribution line after a quench / B. Bradu [et al.] // Cryogenics.2010.Vol. 50, no. 2. P.
71–77.62. Dynamic simulation of the helium refrigerator/liquefier for LHD / R. Maekawa[et al.] // Cryogenics. 2005. Vol. 45, no. 3. P. 199–211.63. Veeramani C., Spiteri R. J. Modeling and simulation of the CLS cryogenic158system // Applied Mathematical Modelling. 2013. Vol. 37, no. 1—2. P. 34–49.64. Butkevich I., Ridnic E., Shpakov V. Cryogenic Helium Units SimulationModel // The 9th CRYOGENICS 2006 IIR International ConferenceProceedings / International Institute of Refrigeration. Prague, 2006. P. 223–226.65. Python Reference Manual : CWI Technical Report : Technical ReportCS-R9525 / Centrum voor Wiskunde en Informatica (CWI) ; Executor:G. van Rossum.
Amsterdam : Centrum voor Wiskunde en Informatica (CWI),1995. 54 p.66. van der Walt S., Colbert S. C., Varoquaux G. The NumPy Array: A Structurefor Efficient Numerical Computation // Computing in Science Engineering.2011. Vol. 13, no. 2. P. 22–30.67. Hunter J. D. Matplotlib: A 2D Graphics Environment // Computing in ScienceEngineering. 2007. Vol. 9, no. 3. P.
90–95.68. Lemmon E. W., Huber M. L., McLinden M. O. NIST Standard ReferenceDatabase 23: Reference Fluid Thermodynamic and Transport Properties –REFPROP. 2013. Standard Reference Data Program. URL: http://www.nist.gov/srd/nist23.cfm (online; accessed: 01.06.2015).69. Inc. Aspen Technology. Aspen Hysys Dynamic User Guide, V7.0. 2010.70.
Holzl R., Hecht T., Freko P. Damage Analysis and Fatigue Evaluation of anAluminium Brazed Plate Fin Heat Exchanger // Proceedings of the ASME2014 Pressure Vessels and Piping Conference / ASME. Vol. 3. New York :ASME, 2014.71. Modeling and dynamic simulation of a large scale helium refrigerator / C. Lc[et al.] // Physics Procedia: Proceedings of the 25th International CryogenicEngineering Conference and International Cryogenic Materials Conference2014. Vol. 67. Amsterdam : Elsevier B.
V., 2015. P. 135–140.72. Inc. Aspen Technology. Aspen Plus: Getting Started Using Equation OrientedModeling, V8.4. 2013.15973. McCarty R. D., Arp V. D. A New Wide Range Equation of State for Helium //Advances in Cryogenic Engineering: Part A and B / Ed. by R. W. Fast.Boston, MA : Springer US, 1990. P. 1465–1475.74. Dutta R., Ghosh P., Chowdhury K.
Customization and validation of acommercial process simulator for dynamic simulation of Helium liquefier //Energy. 2011. Vol. 36, no. 5. P. 3204–3214.75. Peng D.-Y., Robinson D. B. A New Two-Constant Equation of State //Industrial and Engineering Chemistry Fundamentals. 1976. Vol. 15, no. 1.P. 59–64.76. Stryjek R., Vera J.
H. An Improved Cubic Equation of State // Equations ofState: Theories and Applications / Ed. by K. C. Chao. Washington : AmericanChemical Society, 1986. P. 560–570.77. Jacobsen R. T., Penoncello S. G., Lemmon E. W. Thermodynamic Propertiesof Cryogenic Fluids. Boston, MA : Springer US, 1997. 312 p.78. Applicability of equations of state for modeling helium systems / R. J. Thomas[et al.] // Cryogenics.
2012. Vol. 52, no. 7—9. P. 375–381.79. Dynamic simulation of Brazed Plate-Fin Heat Exchangers / D. Averous[et al.] // Computers & Chemical Engineering: Proceedings of EuropeanSymposium on Computer Aided Process Engineering. Vol. 23, Supplement.Amsterdam : Elsevier B. V., 1999. P. 447–450.80. A Dynamic Model for Helium Core Heat Exchangers / W. E. Schiesser[et al.] // Supercollider 2 / Ed. by M. McAshan.Boston, MA : SpringerUS, 1990.
P. 227–243.81. PankajS.,NittinK.TemperatureResponseofCellularNetworkBased Concentric Tube Heat Exchanger for Concurrent Flow UsingMatlab/Simulink // Research Journal of Engineering Sciences. 2013. Vol. 2,no. 5. P. 19–23.82. Bracco S., Faccioli I., Troilo M. Dynamic Simulation Model of a Two-FluidsHeat Exchanger Based on a Numerical Discretization Method // Proceedings ofthe 6th WSEAS International Conference on System Science and Simulation in160Engineering.
Vol. 23, Supplement. Sofia : World Scientific and EngineeringAcademy and Society, 2007. P. 285–293.83. Varbanov P. S., Klemes J. J., Friedler F. Cell-based dynamic heat exchangermodels — Direct determination of the cell number and size // Computers &Chemical Engineering.2011.Vol. 35, no. 5.P. 943–948.SelectedPapers from ESCAPE–20 (European Symposium of Computer Aided ProcessEngineering – 20).84. Varga E. I., Hangos K.
M., Szigeti F. Controllability and Observability ofHeat Exchanger Networks in the Time-Varying Parameter Case // ControlEngineering Practice. 1995. Vol. 3, no. 10. P. 1409–1419.85. Mathisen K. W., Morari M., Skogestad S. Dynamic Models for HeatExchangers and Heat Exchanger Networks // Computers & ChemicalEngineering.1994.Vol.
18, Supplement 1.P. 459–463.Proceedingsof European Symposium on Computer Aided Process Engineering – 3.86. Colburn A. P. A Method of Correlating Forced Convection Heat-TransferData and a Comparison With Fluid Friction // International Journal of Heatand Mass Transfer. 1964. Vol. 7, no. 12.
P. 1359–1384. Proceedings ofEuropean Symposium on Computer Aided Process Engineering – 3.87. Shah R. K., Sekulic D. P. Fundamentals of Heat Exchanger Design.1stedition. John Wiley & Sons, 2003. 941 p.88. Massoud M. Engineering Thermofluids: Thermodynamics, Fluid Mechanics,and Heat Transfer.
1st edition. Springer, 2005. 1119 p.89. Recent Developments on Air Liquide Advanced Technologies Turbines /F. Delcayre [et al.] // Advances in Cryogenic Engineering: Transactions ofthe Cryogenic Engineering Conference. Vol. 1434 57. Melville : AIP, 2012.P. 820–827.90. Dynamic Simulation of an Helium Refrigerator / C. Deschildre [et al.] //Advances in Cryogenic Engineering:Transactions of the CryogenicEngineering Conference. Vol. 985 53. Melville : AIP, 2008. P. 475–482.16191. Whitfield A., Baines N.
C. Design of Radial Turbomachines.Harlow :Longman Scientific & Technical, 1990. 397 p.92. Apollonio A. Machine Protection: Availability for Particle Accelerators :Ph. D. thesis / A. Apollonio ; Vienna University of Technology.Vienna,2015. 148 p.93. Ganni V., Knudsen P. Optimal Design and Operation of Helium RefrigerationSystems Using the Ganni Cycle // Advances in Cryogenic Engineering:Transactions of the Cryogenic Engineering Conference.Vol. 1218 55.Melville : AIP, 2010.
P. 1057–1071.94. Schoenfeld H., Cretegny D., Loehlein K. Standard Liquefier Test Resultswith Improved Turbines // Proceedings of the 20th International CryogenicEngineering Conference (ICEC20). Beijing : Elsevier B. V., 2004. P. 119–122.95. Efficiency Improvement of Small Gas Bearing Turbines – Impact onStandard Helium Liquefier Performance / D. Cretegny [et al.] // Advancesin Cryogenic Engineering:Transactions of the Cryogenic EngineeringConference. Vol. 710 49. Melville : AIP, 2004. P.
272–278.96. Development of a Measurement and Control System for a 40 l/h HeliumLiquefier based on Siemens PLC S7–300 / H. J. M. ter Brake [et al.] // PhysicsProcedia:Proceedings of the 25th International Cryogenic EngineeringConference and International Cryogenic Materials Conference 2014. Vol. 67.Amsterdam : Elsevier B. V., 2015. P.
1181–1186.Температура в сборнике жидкого гелия, К050100150200250300012p = 1,050 барp = 1,100 барp = 1,150 барp = 1,200 барp = 1,250 барp = 1,350 бар34p = 1,075p = 1,125p = 1,175p = 1,225p = 1,300p = 1,4005барбарбарбарбарбар76Время, ч8910111213ПРИЛОЖЕНИЕП. 1. Шаги решения оптимизационной задачи по нахождению оптимальногозначения параметра «давление в сборнике жидкого гелия»Температура в сборнике жидкого гелия, К050100150200250300012T = 20 КT = 60 КT = 100 КT = 140 КT = 180 КT = 220 КT = 260 К34T = 40 КT = 80 КT = 120 КT = 160 КT = 200 КT = 240 КT = 280 К576Время, ч8910111213П.
2. Шаги решения оптимизационной задачи по нахождению оптимальногозначения параметра «уставка температуры начала регулированиярегулирующим вентилем РВ-2»p14УОfpвх1EOSρвхУВTвхhвхm = x3Δp—TвыхEOSpвыхT3TнТОА-2Аp3pнУРm х = x2Tх.1pх.1ΔpгTг.Npг.NΔpхmг = x1УРTх.Npх.NTг.1pг.1УР: уравнение расхода вида Δp = k · m2EOS: уравнение состояния реального газа вида PRSVУО: уравнение открытия сечения вентиля вида f = f(z) (эксп.)УВ: основное уравнение вентиля вида v = f · Kv · (Δp)0,5 / (G)0,5УРСА: уравнение расхода через сопловой аппарат вида m = f(π01)УЭС: уравнение изоэнтропной скорости вида Cs = (2 · Δhs)0,5УСР1: уравнение степени радиальности вида ρт = f(u1/Cs) (эксп.)УСР2: уравнение степени радиальности вида ρт = (∆hs − ∆h1s)/∆hsУИЭ1: уравнение изоэнтропного КПД вида ηs = f(u1/Cs, Δp) (эксп.)УИЭ2: уравнение изоэнтропного КПД вида ηs = ∆h/∆hsУХП: уравнение холодопроизводительности вида Qх = f(n) (эксп.)SOLVE: итерационный численный решательpвT14zэкспf(z)Kv1p13'T13'T4p4РВ-1m = x3УРСАX3T3'p3'ТОА-2Бp1π01ρ0T01ТД-1X1EOSpг.NTг.NΔpгУРmг = x1Tг.1pг.1pх.1Tх.1m х = x2УРΔpхTх.Npх.Nmг.ном, αг.ном, λг.ном, Prг.ном, ρг.ном,mх.ном, αх.ном, λх.ном, Prх.ном, ρх.ном,Amг.ном, αг.ном, λг.ном, Prг.ном, ρг.ном,mх.ном, αх.ном, λх.ном, Prх.ном, ρх.ном,Aπкрит, mном,θном, kp0h2T2EOS+p13T132QxEOSh03s0∆hh1s—p4УХПТОА-3T4эксп Qx(n)ηsУИЭ2nУСР2D, const πXρт1—u1УСР12pг.NTг.NΔpгУРTг.1pг.1pх.1Tх.1m х = x2УРΔpхTх.Npх.Nmг.ном, αг.ном, λг.ном, Prг.ном, ρг.ном,mх.ном, αх.ном, λх.ном, Prх.ном, ρх.ном,Ax1 – массовый расход газа прямого потокаx2 – массовый расход газа обратного потокаx3 – расход газа детандерного потока∆h1sУИЭ1∆hs∆pэксп ρт(u1/Cs)/u1/Csp12T12SOLVEСs∆hs—p2 = xУЭСh2sEOSвнешние данныеpг.NTг.NΔpгУРTг.1T5ТОА-4pг.1m c = x3p5TmpmTc.NTc.1УРmг.ном, αг.ном, λг.ном, Prг.ном, ρг.ном,mх.ном, αх.ном, λх.ном, Prх.ном, ρх.ном,mс.ном, αс.ном, λс.ном, Prс.ном, ρс.ном,A1, A2Kvоператорынеизвестныеp2 = xУЭСпеременные∆hs—ячейки памяти1pc.Npc.1УРΔpхTх.Npх.NΔpсTm’pг.1Tг.1mх = x2pm’p11T11ТД-2πкрит, mном,θном, kпервичные уравнениявторичные уравнения∑m = x3УРСАp0X3эксп Qx(n)p1π01ρ0T01ТОА-5T6p6X1EOST2EOS+2QxEOSh03s0∆hpг.NTг.NΔpгУРTг.1pг.1h1s—pх.1Tх.1m х = x2УРΔpхTх.Npх.Nmг.ном, αг.ном, λг.ном, Prг.ном, ρг.ном,mх.ном, αх.ном, λх.ном, Prх.ном, ρх.ном,Amг.ном, αг.ном, λг.ном, Prг.ном, ρг.ном,mх.ном, αх.ном, λх.ном, Prх.ном, ρх.ном,Ah2Продукционный поток: 3 – 3' – 4 – 5 – 6 – 7 – 7' – 7'' – 8 – xДетандерный поток: 4 – 4' – m – m' – m'' – 10Обратный поток: g – 9 – 9' – 9'' – 10 – 11 – 12 – 13 – 13' – 14ηsp10T10УХПУИЭ2T9'’Tm’’D, const π∆h1sУИЭ1p9'’1nУСР2∆hs∆pp7T2p1T1ТОА-6T7Xρт1—u1pг.NTг.NΔpгУРTг.1pг.1EOSEOSУСР12эксп ρт(u1/Cs)/u1/CsSOLVEXh2h1Xpх.1Tх.1УРΔpхTх.Npх.Nm2 = x2m1 = x3Сs∆hs—p2 = xУЭСh2sEOS+H1p9'T9'H2M+1m = x3SOLVEpm’’zэкспf(z)h/РВ-4Hzэкспf(z)Kvp7'fУОTEOSУОfpвхT7'pвх1EOSρвхУВKvСМ11EOSρвхУВΔpTвхhвх—Tвхhвхm = x1Δpm = x11—hвых=pвыхT7'’TвыхEOSpвыхp7'’РВ-3pг.NTг.NΔpгУРTг.1pг.1TвыхΔmm’—ΔtΔtСБEOS+Xpвыхm1XX1pх.1Tх.1УРΔpхTх.Npх.NpXpвх=p9T9ТОА-7hвхXmвх’mвых’QQH+ΔHhвх’hвыхXXhXEOShg=hвх’ΔQpвpв—mх = x2Δp∑SOLVEmг = x1+mх = x2L’hlXh l’∑—L’L’П.