Диссертация (1025160), страница 19
Текст из файла (страница 19)
. кандидата наук / С. С. Кошелев ; МГТУим. Н. Э. Баумана. Москва, 2013. 176 с.7. Нагимов Р. Р. Разработка стратегии системы контроля процессом сжатиягелия низкого давления // Наука и образование. 2013. № 2. С. 45–60.8. Трофимов В. А. Электронные средства автоматизации криогенныхустановок в ядерно-физических экспериментах : Дисс. . . кандидата наук /152В. А. Трофимов ; Петербургский институт ядерной физики имениБ. П. Константинова. Гатчина, 2006. 146 с.9. БуткевичИ.К.,РыдникЕ.А.,ШпаковВ.М.Применениеимитационной системы envicon для моделирования производства жидкогогелия // Сборник докладов третьей всероссийской научно-практическойконференции по имитационному моделированию и его применениюв науке и промышленности «Имитационное моделирование.
Теория ипрактика» (ИММОД-2007). Санкт-Петербург, 2007. С. 34–37.10. Шатиль Н. А. Численное моделирование термогидравлических процессовв элементах сверхпроводниковых магнитных систем и систем ихкриогенного обеспечения : Дисс. . . кандидата наук / Н. А. Шатиль ;Научно-исследовательскийинститутэлектрофизическойаппаратурыим. Д. В.
Ефремова. Санкт-Петербург, 2000. 153 с.11. Козуб С. С. Разработка и создание сверхпроводящих устройств и системкриогенного обеспечения для ускорителей и каналов транспортировкипучков частиц высоких энергий : Дисс. . . доктора наук / С. С. Козуб ;Институт физики высоких энергий. Протвино, 2013.
213 с.12. Чермак И., Петерка В., Заворка И. Динамика регулируемых систем втеплоэнергетике и химии. Москва : Мир, 1972. 623 с.13. Кэйс В. М., Лондон А. Л. Компактные теплообменники: Пер. с англ.Москва : Энергия, 1967. 224 с.14. Алексеев В. П., Вайнштейн Г. Е., Герасимов П. В. Расчет и моделированиеаппаратов криогенных установок.
Ленинград : Энергоатомиздат, 1987.279 с.15. Епифанова В. И. Компрессорные и расширительные турбомашинырадиального типа. Москва : Машиностроение, 1984. 376 с.16. Буткевич И. К. Моделирование и исследование режимов работыкриогенных гелиевых систем : Дисс. . . доктора наук / И. К. Буткевич ;МГТУ им. Н. Э. Баумана. Москва, 1994. 245 с.15317. Lebrun P. Large scale cryogenics for particle accelerators // Proceedings of theXXVI International Conference on High Energy Physics. Vol. 272.
Melville :AIP, 1992. P. 2000–2007.18. Nitrogen and argon doping of niobium for superconducting radio frequencycavities: a pathway to highly efficient accelerating structures / A. Grassellino[et al.] // Superconductor Science and Technology. 2013. Vol. 26, no. 10.19.
Status of the LHC superconducting cable mass production / J. D. Adam[et al.] // IEEE Transactions on Applied Superconductivity. 2002. Vol. 12,no. 1. P. 1056–1062.20. A success story: LHC cable production at ALSTOM-MSA / G. Grunblatt[et al.] // Fusion Engineering and Design: Proceedings of the 23rd Symposiumof Fusion Technology.
Vol. 75–79. 2005. P. 1–5.21. Chikazumi S. Physics of Ferromagnetism.2nd edition.Oxford : OxfordUniversity Press, 1997. 665 p.22. Russenschuck S. Field Computation for Accelerator Magnets.Weinheim :Wiley-VCH, 2010. 764 p.23. Advanced technology from and for basic science: superconductivity andsuperfluid helium at the large hadron collider : Rep. : Departmental ReportCERN/AT 2007–30 / CERN ; Executor: P. Lebrun. Geneva : CERN, 2007.8 p.24. Wilson M. N. Superconducting materials for magnets // Superconductivityin particle accelerators: Proceedings of CERN accelerator school / Ed. byS. Turner. Geneva, 1996. P.
47–69.25. Vedrine P. Large Superconducting Magnet Systems // Proceedings of the CASCERN Accelerator School (CAS 2013): Superconductivity for Accelerators.Geneva : CERN, 2014. P. 559–583.26. Padamsee H. RF Superconductivity. Hoboken : Wiley-VCH, 2009.
464 p.27. Padamsee H., Knobloch J., Hays T. RF Superconductivity for Accelerators.Hoboken : John Wiley & Sons, 1998. 464 p.15428. Improved surface treatment of the superconducting TESLA cavities / L. Lilje[et al.] // Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment. 2004. Vol.516, no. 2–3.
P. 213–227.29. Cryogenic System for the Cryomodule Test Facility at Fermilab / M. White[et al.] // Advances in Cryogenic Engineering: Transactions of the CryogenicEngineering Conference. Vol. 1573 59A. Melville : AIP, 2014. P. 179–186.30. TESLA Technology Collaboration.inconstructionorunderdesignSRF Accelerators in operation,inEurope.URL:http://tesla-new.desy.de/sites/site_tesla/content/e163749/e163751/infoboxContent163765/SRFAccelerators.pdf(online; accessed: 01.06.2015).31. HEPAK Specifications // HEPAK, Version 3.4 Horizon Technologies.
URL:http://www.htess.com/hepak.htm (online; accessed: 01.06.2015).32. Cryogenic Infrastructure for Superfluid Helium Testing of LHC PrototypeSuperconducting Magnets / V. Benda [et al.] // Advances in CryogenicEngineering: Transactions of the Cryogenic Engineering Conference. Vol. 39.New York : Springer US, 1994. P.
641–648.33. Design of the cryogenic system for the TORE SUPRA tokamak / G. Claudet[et al.] // Cryogenics. 1986. Vol. 26, no. 8. P. 443–449.34. Development of large-capacity refrigeration at 1.8 K for the Large HadronCollider at CERN : Rep. : CERN-LHC-Project-Report-6 / CERN ; Executor:P. Lebrun, L. Tavian, G. Claudet.
Geneva : 1996. 6 p.35. Fuerst J. Selection of Cold Compressors for the Fermilab Tevatron // Advancesin Cryogenic Engineering:Transactions of the Cryogenic EngineeringConference. Vol. 39. New York : Springer US, 1994. P. 863–869.36. Experimental Results Obtained with Air Liquide Cold Compression System:CERN LHC and SNS Projects / F. Delcayre [et al.] // Advances in CryogenicEngineering:Transactions of the Cryogenic Engineering Conference.Vol. 823 51. Melville : AIP, 2006. P.
1829–1836.15537. Fuerst J. D. Design, Construction, and Operation of a Two CylinderReciprocating Cold Compressor // Advances in Cryogenic Engineering:Transactions of the Cryogenic Engineering Conference.Vol. 37B. NewYork : Springer US, 1992. P. 795–800.38. Design, Project Execution, and Commissioning of the 1.8 K Superfluid HeliumRefrigeration System for SRF Cryomodule Testing / P. Treite [et al.] // PhysicsProcedia. 2015. Vol.
67. P. 111–115.39. Evolution of the Standard Helium Liquefier and Refrigerator Range Designedby Air Liquide DTA, France / A. Caillaud [et al.] // Advances in CryogenicEngineering:Transactions of the Cryogenic Engineering Conference.Vol. 985 53. Melville : AIP, 2008. P. 830–837.40. Kuendig A., Schoenfeld H. Helium Refrigerator Design for Pulsed Heat Loadin Tokamaks // Advances in Cryogenic Engineering: Transactions of theCryogenic Engineering Conference.Vol. 823 51.Melville : AIP, 2006.P.
1995–2001.41. Validation and Performance of the LHC Cryogenic System ThroughCommissioning of the First Sector / L. Serio [et al.] // Advancesin Cryogenic Engineering:Transactions of the Cryogenic EngineeringConference. Vol. 985 53. Melville : AIP, 2008.
P. 1411–1418.42. Cool-Down of the First Sector of the Large Hadron Collider: ComparisonBetween Mathematical Model and Measurements / L. Liu [et al.] // Advancesin Cryogenic Engineering:Transactions of the Cryogenic EngineeringConference. Vol. 985 53. Melville : AIP, 2008. P. 1395–1402.43. Bellesia B., Todesco E., Catalan-Lasheras N. MAGNET (RE)TRAINING //Proceedings of Chamonix 2009 Workshop on LHC Performance. Chamonix,2009. P. 264–270.44. Thermohydraulics of quenches and helium recovery in the LHC prototypemagnet strings / M.
Chorowski [et al.] // Cryogenics. 2012. Vol. 38. P. 533–543.15645. Dynamic simulation of the ITER helium cryogenic system under pulsedheat loads / W. Booth [et al.] // Proceedings of International CryogenicsEngineering Conference and International Cryogenic Materials Conference(ICEC 24/ICMC 2012) / Cryogenics and Superconductivity Society of Japan.Fukuoka, 2012. P. 595–598.46. Study on mitigation of pulsed heat load for ITER cryogenic system / N.
Peng[et al.] // Cryogenics. 2015. Vol. 66, no. 2. P. 1–5.47. Development of a Simulation Module for the Cryogenic System / H. C. Li[et al.] // Proceedings of European Particle Accelerator Conference 2008.Genoa, 2008. P. 2506–2508.48. The Fermilab CMTF Cryogenic Distribution Remote Control System / L. Pei[et al.] // Advances in Cryogenic Engineering: Transactions of the CryogenicEngineering Conference.
Vol. 1573 59. Melville : AIP, 2014. P. 1713–1719.49. Cryogenics Controls in the ISAC–II Superconducting RF Accelerator /R. Nussbaumer [et al.] // Proceedings of The 12th International Conference onAccelerator and Large Experimental Physics Control Systems. Kobe, 2009.P. 919–921.50. Cryogenic System for the SLS Third Harmonic RF Cavity / P. Marchand[et al.] // Proceedings of European Particle Accelerator Conference 2002.Kobe, 2002.
P. 2268–2270.51. Operational Experience with the SOLEIL Storage Ring RF Cryogenic Plant /M. Louvet [et al.] // Proceedings of SRF2013 Conference.Paris, 2013.P. 337–340.52. Process Control Migration of 50 LPH Helium Liquefier / U. Panda[et al.] // Proceedings of International Cryogenics Engineering Conference andInternational Cryogenic Materials Conference (ICEC 26/ICMC 2016). NewDelhi, 2016.53. Bradu B., Gayet P., Niculescu S.-I. A process and control simulator for largescale cryogenic plants // Control Engineering Practice. 2009. Vol.
17, no. 12.P. 1388–1397.15754. Dynamic Modeling and Simulation of the Superconducting Super ColliderCryogenic Helium System / D. G. Hartzog [et al.] // Supercollider 1. 1989.P. 301–320.55. Equation-based dynamic simulator for the cryogenic system of theSuperconducting Super Collider : Rep. : EDRC 06-78-89 / Carnegie MellonUniversity ; Executor: J. Viswanathan, A. W. Westerberg. Pittsburgh : 1989.12 p.56.