ВМ (1023545), страница 4

Файл №1023545 ВМ (Ответы на экзаменационные вопросы в виде шпаргалки) 4 страницаВМ (1023545) страница 42017-07-12СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

Эти разности называются разностями первого порядка.

Можно составить разности второго порядка:

Аналогично составляются разности k-го порядка:

Выразим конечные разности непосредственно через значение функции:

Таким образом, для любого k можно записать:

Запишем эту формулу для значений разности в узле xi:

Используя конечные разности можно определить

Перейдем к построению интерполяционного многочлена Ньютона. Этот многочлен будем искать в виде:

График многочлена должен проходить через заданные узлы, то есть N(xi) = yi(i = 0,n). Используем эти условия для нахождения коэффициентов многочлена:

Найдем отсюда коэффициенты ai :

Таким образом для любого k-го коэффициента формула примет вид:

Подставляя эти формулы в выражение многочлена Ньютона получим его следующий вид:

Конечные разности рассчитываются по приведенным выше формулам.

Полученную формулу можно записать в другом виде. Для этого введем переменную

В этом случае:

С учетом этих соотношений формулу многочлена Ньютона можно записать в виде:

Полученное выражение может аппроксимировать данную функцию y = f(x) на всем отрезке изменения аргумента [x0, xn]. Однако, более целесообразно (с точки зрения повышения точности расчетов и уменьшения числа слагаемых в полученной формуле) ограничиться случаем t < 1, то есть использовать эту формулу для x0, x, x1. Для других случаев вместо x0 принять xi, если xi x xi+1 при i = 0,n-1. В этом случае интерполяционный многочлен можно записать в виде:

Полученная формула называется первым интерполяционным многочленом Ньютона для интерполяции вперед.

Эту интерполяционную формулу обычно используют для вычисления значений функции в точках левой половины рассматриваемого отрезка. Это объясняется следующим: разности

вычисляются через значения функции yi, yi+1, ... , yi+k, причем i + k < n. Из-за этого при больших значениях i мы не можем вычислить разности высших порядков (k < n-i).

ВОПРОС №12. Многочлен Ньютона с конечными разностями для интерполяции назад.

В рассмотренных выше методах не делалось никаких предположений о законе распределения узлов интерполяции. Рассмотрим случай равноотстоящих узлов интерполяции, то есть xi - xi-1 = const = h, i=2n. h - называется шагом.

Введем понятие конечных разностей. Пусть известны значения функции в узлах xi : yi = f(xi ). Составим разности значений функции:

Эти разности называются разностями первого порядка.

Можно составить разности второго порядка:

Аналогично составляются разности k-го порядка:

Выразим конечные разности непосредственно через значение функции:

Таким образом, для любого k можно записать:

Запишем эту формулу для значений разности в узле xi:

Используя конечные разности можно определить

Перейдем к построению интерполяционного многочлена Ньютона. Этот многочлен будем искать в виде:

График многочлена должен проходить через заданные узлы, то есть N(xi) = yi(i = 0,n). Используем эти условия для нахождения коэффициентов многочлена:

Найдем отсюда коэффициенты ai :

Таким образом для любого k-го коэффициента формула примет вид:

Подставляя эти формулы в выражение многочлена Ньютона получим его следующий вид:

Конечные разности рассчитываются по приведенным выше формулам.

Полученную формулу можно записать в другом виде. Для этого введем переменную

В этом случае:

С учетом этих соотношений формулу многочлена Ньютона можно записать в виде:

Полученное выражение может аппроксимировать данную функцию y = f(x) на всем отрезке изменения аргумента [x0, xn]. Однако, более целесообразно (с точки зрения повышения точности расчетов и уменьшения числа слагаемых в полученной формуле) ограничиться случаем t < 1, то есть использовать эту формулу для x0, x, x1. Для других случаев вместо x0 принять xi, если xi x xi+1 при i = 0,n-1.

Для правой половины рассматриваемого отрезка разности лучше вычислять справа налево. В этом случае t = (x - xn ) / h, то есть t < 0 и интерполяционный многочлен Ньютона можно получить в виде:

Полученная формула называется вторым интерполяционным многочленом назад.

ВОПРОС №13. Многочлен Ньютона с конечными разностями для интерполяции Сплайны.

Использование многочленов высокой степени при решении задачи интерполяции связана с повышением сложности вычислений. Помимо этого необходимы спец методы составления подобных многочленов. Дополнительная трудность составляет накопление ошибок в округлении при проведении вычислений. Выходом может служить применение локальной интерполяции с использованием многочленов невысокой степени. Главным недостатком здесь явл. отличие производных у соседних многочленов в т. стыка. Иногда быв. ситуации, требующие гладкости интерполяции многочлена. В этом случае в качестве интерполяции ф-и рекомендуют исп. сплайны, представленные собой спец образом построенные гладкие кусочно-многочленные ф-и, сочетающие в себе локальную простату и глобальную на всём отрезке [x0; xn] гладкость. Пусть отрезок [x0; xn] разбит на n частей [xi-1; xi]. Тогда сплайном степени m Sm(x) наз. ф-ия, обладающая след. св-ми: 1. ф-ия Sm(x) непрерывна на всём отрезке от [x0; xm] вместе со своими производноми до некоторого порядка Р; 2. На каждом отрезке [xi-1; xi] сплайн совпадает с некоторым многочленом степени m. Sm(x)=Pm,i(x)

Разность теорем между степенью сплайна и наивысшей на отрезке (x0; xn) непрерывной производной наз. дефектом сплайна. Показанный на рисунке. Дефект сплайна = 1.

На практике наиб. распространенные полиномы кубич. сплайны с дефектом 1или 2. На каждом отрезке такой сплайн совпад. с полиномом вида:

Потребуем, чтобы на отрезке (x0; xn) сплайн имел как линейно одну непрерывную производную: Величина называется наклоном сплайна. Т.о., на всём отрезке (xi-1; xi) кубический сплайн однозначно определяется величинами

(1)

Фактически задача сводится к определению наклонов сплайна Si-1 и Si :

Если в т. xi , где , нам известны не только величины , но и величины , то естественно предположить: . Получаемый в этом случае сплайн называется естественным.

Можно потребовать, чтобы кубический сплайн имел непрерывную на отрезке от x0 до xn 2-ю производную. Для этого наклоны Si д.б. подобраны т.о., чтобы в т.т. стыка xi у соседних полиномов P3,i(x) и P3,i+1(x) совпадали значения 2-х производных: . Используя ф-лу (1), найдём выражения 2-х производных для полиномов на i-ом и i+1-ом участках.

Приравниваем значения 2-х производных в т. стыка, получим систему из n-1 ур. для n+1 неизвестного:

Полученная система явл. не доопределённой.

Если известны численные значения , то найденная система

дополнилась бы 2-я ур.: для левой границы:


Если численные значения неизвестны, то полученную систему можно привести к системе, определяющий естественный кубический сплайн. В этом случае искусственно полагают вторые производные на границах отрезка x0 и xn = 0.

ВОПРОС №14. Многочлен Ньютона с оконченными разностями для интерполяции. Характер экспериментальных данных. Понятие аппроксимации. Метод выбранных точек и средних.

Многочлен Ньютона с конечными разностями для интерполяции. В рассмотренных выше методах не делалось никаких предположений о законе распределения узлов интерполяции. Рассмотрим случай равноотстоящих узлов интерполяции, то есть xi - xi-1 = const = h, i=2n. h - называется шагом.

Введем понятие конечных разностей. Пусть известны значения функции в узлах xi : yi = f(xi ). Составим разности значений функции:

Эти разности называются разностями первого порядка.

Можно составить разности второго порядка:

Аналогично составляются разности k-го порядка:

Выразим конечные разности непосредственно через значение функции:

Таким образом, для любого k можно записать:

Запишем эту формулу для значений разности в узле xi:

Используя конечные разности можно определить

Перейдем к построению интерполяционного многочлена Ньютона. Этот многочлен будем искать в виде:

График многочлена должен проходить через заданные узлы, то есть N(xi) = yi(i = 0,n). Используем эти условия для нахождения коэффициентов многочлена:

Найдем отсюда коэффициенты ai :

Таким образом для любого k-го коэффициента формула примет вид:

Подставляя эти формулы в выражение многочлена Ньютона получим его следующий вид:

Характеристики

Тип файла
Документ
Размер
1,12 Mb
Высшее учебное заведение

Список файлов ответов (шпаргалок)

Ответы на экзаменационные вопросы в виде шпаргалки
Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6353
Авторов
на СтудИзбе
311
Средний доход
с одного платного файла
Обучение Подробнее