Главная » Просмотр файлов » Горбатов В.А. - Фундаментальные основы дискретной математики. Информационная математика - 2000

Горбатов В.А. - Фундаментальные основы дискретной математики. Информационная математика - 2000 (1019108), страница 93

Файл №1019108 Горбатов В.А. - Фундаментальные основы дискретной математики. Информационная математика - 2000 (Горбатов В.А. - Фундаментальные основы дискретной математики. Информационная математика - 2000) 93 страницаГорбатов В.А. - Фундаментальные основы дискретной математики. Информационная математика - 2000 (1019108) страница 932017-07-08СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 93)

Проводим сечение по дугам (ХЗ> ХЭ)> (Хт> Хб)> (Х1> Хь)> (Хб> ХВ)> (Хт> Хе) ° На выходах автоматов хе, хь, хэ получаем правильные значения: хе = хб — — хэ — 1. Проводим второе сечение по дугам (ХЗ> Х2)> (ХЗ> Х1)> (Х10> Х1)> (Х10> Хб)> (Х10> ХТ). На выходах автоматов х2, х1, хб, хт получаем значения, соответствующие хз = 0: х1 — — хб = ху = 1. Следовательно, неисправен автомат хт, так квк хз ( х1, и, следовательно, третье сечение, разрывающее дугу (хз, ХЗ), реалйзовывать нет необходимости. В случае, если модель Ф, содержит запрещенные фигуры, их устранение осуществляется путем сужения ее сигнатуры.

Использование предлагаемого метода в практических разработках значительно уменьшает время диагностирования н упрощает контрольную аппаратуру. 25.14. Задачи и упрахиеиия $.1. Определить трудоемкость и емкостную сяоиность злгорптме сиитзксяческого эквивэлентнровзняк неорнеитнровзняого трефе в двудольный путем удзленяя ребер, если функшюиелом кзчестве кзлке>ск минимум удаленных ребер, $.2.

Проверить зыполненяе принципе локзльностн длк хзрзктеряззцнонной задачи креобрззоэзяия грефе в двудольный и отношевня подчинения "быть подгрефом" (попомним, что кодгреф отзичзется от чэстичного подгрзфз тем, что если в ием иег кзкЖ-либо вершины графа, то иет я всех инцндентпых ей в грзфе ребер). Обрэзуют ли циклы ихгетной длины мнояество ззпрешекных фигуру $.3. Определить отношение подчинения, удовлетворяющее принципу локзльнасти длк кроблешя >сзрзктериззцин гзмньътоиозых графов. $.4. Определить отношеяяе кодчннешгк, удовлетворшощее принципу пепельности для проблемы хэрзвтериэзции эйлеровых графов. $.$. Предлоиить алгоритмы сннтзксичесвого, эвристического и семзнтяческого эквивэлентироэзннк неориептнровзяных грэбюв в зйлеровы.

Сровнять трулоемкость и емкостпую слоиность алгоритмов. $.$. Выполнить семэнтнческое эквнвзлегпировэние графа С>, который является дополнением грзфе, изобрзяениого ио рис. 5.4,6, в двудольный граф Сз —— (>з, Уз) лля следующшс способов преобрззовзннй ззкрещенных фигур в рззрешенные н фунвционзлов качества: э) удзление нз нечетного днкле ребра, >з(Сз) = и>зх (Уз(; б) рзсаиеклеиие вершины нежтиого цикла, Ч>(Сз) = ппп (Уз).

$7. Докеззть, что ври удзленни коглошзющихск строк и столбцов (см. 1 5 2), применяемом для сокрзшеянк трудоемкостя изхозщеиня покрытнк семзнтпческой тзблицы, минимзльяое решеняе остэегск. $.8. Определить, кзлккяск ли неустойчивыми зекрешенные фягуры типов А и Б, присутствующие в могрзфе, приведенном из ряс. 5.10, а. $.9.

Домазать, чтр решение ззлечи теорепгко-структурной минимиээкни функции У(х> > хз, хз, ха)П = >/(2> 3, 4, 5, 8, 9, 11, 12, 14, 15) ареллоиенным в 1 5 4 методом, который основзи из фукяционзле (5.1), об солюпю минимально. У(ха хз ха, ха)(> = Ч(2> 3> 4 5 8, 9, 11, 12 13 14 15) $.14. Миннмвзировзть с учетом теоретико-структурных свойств булеву фуик- шоо >1 нз 1,3,4,7,9,12,14,28,31, $.1$. Синтезировать диаграмму Хассе мянкмзльной слоиности, реэлизую- щую систему булевых функций вила У>(х» хз, хз, ха)(> = >Г(1> 3, 4, 5, 6, 7, 9, 11, 13, 15), Уз(х» хз> ха> ха))> = П(1> 3, 5, 7> 9> 11, 12, 13> 14, 15), ааа(х» хз, хз, ха))> = Ч(1> 3, 5, 7, 8, 9, 10, 11, 13, 15), Уа(х>, хз, ха, ха))> = >Г(1> 2, 3, 5, 7, 9, 10, 11, 13, 15), Уа(х>, хз, ха, ха)(> = Ч(1, 2, 3, 5, 6, 7, 9, 11, 13, 15).

$.1$. Рэзлояять эвтомзт С, переходы которого заданы мзтрипей сменности а> аз аа аа аз аа а> аз аа' а(С)— аг ие двз несвязных кзрзллелыю фуикционвруюшнх звтомзтз. $.17. Нейти пределыюе рззлаиеине звтомете, зздзнного в упр. 5.16. $.18. Сннтезнровзть фуивционельиую декомпозшопо булевой функция 71 нз О, 2, 4, 7, 11, 14, 16, 21, 29, 30, У(хьхз, >хз)=),0 нэ 1 5,6 9,17,18 28 $.19. Синтезировать фунвциоиэльиую декомаозккшо трехзизчной функции 1'0 из 1, 2, 11, 14,86, 117, 240, У(х>, хз, ..., хз) = 1 иэ 3, 5, 17, 27, 39, 181, 222, 2 не 7,9,43,51,64,201. $.30.

Синтезнровзть нейрон, резлязующяй булеву функцию у(х>, хз, хз, ха)(> = >Г(0, 1, 2, 7, 11). $.10. Доказать, что решение зедечн теарепако-структурной минимизации системм булевых функций, зздзвеемой тзбл. 5.12 кредлоиенным в $ $.4 методом, который осиозен нз фуиккионэле (5.2), абсолютна минимельно. $.11. Определить ебстрзктную дорэллельную декомкозшооо звтомэтз (см, рис. 5.28, а), нзчинзя с построения второго кодзвтомзтз (имеющего четыре состояния).

Изменится ли результзт декомпознкниу $.13. Выволиить семзнтическое эквивзлентнровзняе могрзфз Ф (см. рис. 5.30, е) в циклнческвй Фь с фуявцнонзлом кзчесгвз (мннимум рэсщепленяй) и следующими спасобзми преобреэовзняк запрещенных фигур в разрешенные> з) рэсщепл>юие элементе носителя; б) ресщевление слово, $.13. Мииимнэировзть с учетом теоретико-структурных свойств булеву функ- дню 532 Гл.5. Прикладная теория алгоритмов $.31. Синтеаировать нейрон, реализующий булеву функцию /(хз, хг, хз, хз)(з = Ч(0, 1, 2, 4, 9, 14).

$.33. Вычислить трассы булевой функции /(хз, хг, хз, хз)(з = и(0, 1, 2, 4, 9). $.33. Вычислять анамальпучо область функционирования лагичесвай струвтуры, реалиэуюшей булеву фунвдию /(хи хг, хз, хз)(з = и(0, 1, 2, 7, 13). $.34. Вычислить трассы булевой фунацви /(хн хг, хз, хз)(з = и(0, 1, 2, 9, 1$). $.3$. Вычислить трассы булевой фунвции /(хз, хг, хз, хз))з ю и(0, 1, 2, 4, 7, б, 11). 3 5.15.

Комментарии Борьба с перебором вариантов при решении задач дисарепюй математики — одна из автуальиейшях проблем современного математичесвога обеспечения систем переработан информапни. Усвеха можно достичь, талька решая проблему хараатериэацни реализуемых модельшлх вреобрааований. Если яе хараатеризациониая вроблема не решена, та исвальауют эвристический подход в автнмнаацин аамбинатарных алгоритмов. Харавтеризаэмонцьзй анализ является метатеорией, аонструатявиа сюзэываюшей различные формальные системы иа семеитичесаом уровяе знаний, что паавацяет разрабатывать аринцвииальио новые инфармаююнные технологии решения враблемзпах задач большой раамериости иа лисаретиых струатурах.

В иастаяшее время интенсивна развивается перспевтивная пауза, позволташая с единых методологических а рюши воз исследовать и прагиааяровать общие законы развития мяврамира, мира, маврамира. Эта наука названа ее основателем академиком И.И. Юзэншиным ииформачиолоеией. СПИСОК ЛИТЕРАТУРЫ Автоматизация проектирования сложных логических структур /Под ред. В.А. Горбатова.— Мл Энергия, 1978.

Ахо А., Хопкрофт Дж., Ульмак Дж. Построение н анализ вычислительных алгоритмов.— Мл Мир, 1979. Гильберт Д., Бернайс П. Основания математики. Логические исчисления н формализация арифметики.— Мл Наука, 1979. ГорБатов В.А. Квазнполные графы и их некоторые свойства // Доклады НТК МЭИ. Вычислительная техника. — Мл МЗИ, 1965. — С. 3-10.

Горбатов В.А: О минимальной раскраске графа//Доклады НТК. МЗИ, 27 марта — 10 апреля 1964 г. Подсекция вычислительной техники.— Мл МЗИ, 1964.— С. 17. Горбатое В.А. Оценки при выборе направления вычислений в задачах синтеза конечных автоматов1Г Изв. АН СССР. Техническая кибернетика. †19. — № 4. — С, 91-101. Горбат оа В.А.

Семантическая теория проектирования автоматов.— Мл Энергия, 1979. Горбатое В.А. Синтез логических схем в многозначных логиках, основанный на структурных соотношениях//Многозначные элементы н структуры.— Мл Сов. радио, 1967. Горбатов В.А. Синтез логических схем в произвольном базисе // Теория дискретных автоматов.— Рига: Зннатне, 1967. 10.

Горбатов В,А. Схемы управления ЦВМ н графы.— М.: Энергия, 1971. 11. Горбатов В.А. Теория частично упорндоченных систем.— М.: Сов. радио, 1976. 12. Горбатов В.А., Кафаров В.В., Павлов П.Г. Логическое управление технологическими процессамн.— Мл Энергия, 1978. 13. Горбатов В.А., Останков Б.Л., Фролов СА. Регулярные структуры автоматного управления / Под ред.

В.А. Горбатова.— М.: Машиностроение, 1980. 14. Горбатое В.А,, Павлов П.Г., Четвериков В.П. Логическое управление информационными процессамн.— М.: Знергоатомнздат, 1984. 15. Горбатое В.А., Смирнов МИ., Хлытчиее Н.С. Логическое управление распределенными системами.— Мл Знергоатомнздат, 1991. 534 Список литеротпуры Список литературы 535 16. Горбатова М.В. Теория трасс у Информационные коммуникации, сети, системы и технологии.— Мл МАИ, 1993, 1Т. Гудман С., Хидентниеми С. Введение в разработку и анализ алгоритмов.— Мл Мир, 1981. 18.

Гэри М., Джонсон Д. Вычислительные машины и труднорешаемые задачи.— Мл Мир, 1982. 19. Зыков А.А. О некоторых свойствах линейных комплексов//Мат. сборник.— 1949.— Т. 24, Хт 2.— С. 163 — 188. 20. Змков А.А. Теория конечных графов.— Новосибирск: Наука, 1969. 21. Даэарев В.Г., Пийль Е.И. Синтез управляющих автоматов.— М.: Энергия, 1978. 22. Майника Э. Алгоритмы оптимизации на сетях и графах.— Мл Мир, 1981.

23. Мальцев А.И. Алгебраические системы.— Мл Наука, 1970. 24. Новиков П.С. Конструктивная математическая логика с точки зрения классической.— Мл Наука, 1977. 25. Общая теория систем.— Мл Мир, 1966. 26. Оре О. Теория графов.— Мл Наука, 1980. 2Т. Поспелов Д.А. Логике-лингвистические модели в системах управления.— Мл Энергия, 1981. 28. Рейнгольд Э.„Ниеергельтп ТО., Део Н.

Характеристики

Список файлов книги

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6363
Авторов
на СтудИзбе
310
Средний доход
с одного платного файла
Обучение Подробнее