Главная » Просмотр файлов » ОТВЕТЫ К МАТАНУ

ОТВЕТЫ К МАТАНУ (1017814), страница 3

Файл №1017814 ОТВЕТЫ К МАТАНУ (Много всякого и полезного по матану) 3 страницаОТВЕТЫ К МАТАНУ (1017814) страница 32017-07-08СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Степенная функция . При возрастании x от 0 до возрастает или убывает на интервале . Следовательно, данная функция непрерывна.

Тригонометрические функции , , , , , . Остановимся на функции . Ее непрерывность на отрезке вытекает из ее монотонности, а также из факта (устанавливаемого геометрически), что при этом она принимает все значения от -1 до 1. То же относится к любому промежутку . Следовательно, функция непрерывна для всех значений x. Аналогично - для функции . По свойствам непрерывных функций вытекает непрерывность функций . Исключение для первых двух функций - значения x вида , при которых , для других двух - значения вида , при которых .

Обратные тригонометрические функции , , , . Первые две непрерывны на , остальные - на







В14.Сравнение и порядок бесконечно малых. Эквиваленты бесконечно малых. Основные примеры


Сравнение бесконечно малых

Определение 2.16 Пусть фиксирована некоторая база и на некотором её окончании заданы две функции и , бесконечно малые при базе . Предположим также, что при всех . Пусть существует

Если , то бесконечно малая имеет тот же порядок малости, что и . Этот факт обозначается так:

Если же , то имеет больший порядок малости, чем . Это обозначается так:

Заметим, что если , то для всех из некоторого окончания базы будет выполнено неравенство . Это сразу следует из того, что

Предложение 2.2 Если при базе бесконечно малая имеет тот же порядок малости, что , то и имеет тот же порядок малости, что , то есть

(S)



Если две бесконечно малых и одного порядка малости, и две бесконечно малых и тоже одного порядка малости при базе , то две величины и также имеют один и тот же порядок малости при базе , то есть

(T)



Кроме того, бесконечно малая величина имеет тот же порядок малости, что она же сама:

(R)



Доказательство. Поскольку то , откуда следует первое из доказываемых утверждений.

Второе утверждение следует из первого и цепочки равенств

где

по условию предложения.

Наконец, третье утверждение сразу следует из очевидного соотношения

Итак, свойство двух или нескольких бесконечно малых величин иметь один и тот же порядок малости, то есть отношение , заданное в множестве бесконечно малых при данной базе величин , является рефлексивным, транзитивным и симметричным.

Рефлексивность какого-либо отношения , заданного в некотором множестве объектов , означает, что выполнено свойство
(R): ,
транзитивность -- что выполнено свойство
(T): ,
а симметричность -- что выполнено свойство
(S): .

Любое рефлексивное, транзитивное и симметричное отношение разбивает множество объектов, для которых оно определено, на классы объектов, эквивалентных по данному отношению: в один класс с объектом попадают все объекты , для которых .

Поэтому все бесконечно малые при данной базе величины разбиваются на классы по отношению , в каждый из которых входят все величины, имеющие один и тот же порядок малости.

Пример 2.31 При базе величины и , где и , , имеют один и тот же порядок малости (так как, очевидно, их отношение постоянно и его предел постоянно и его предел равен . Например, при величины и имеют один и тот же порядок малости.

При базе величина имеет больший порядок малости, чем , при :

так как . Если степени и определены и при , то аналогичное утверждение верно и для двусторонней базы . Например, при величина -- большего порядка малости, чем . При величина -- большего порядка малости, чем , а -- величина большего порядка малости, чем .

Пример 2.34 Поскольку, как мы видели в примерах выше, и , то -- величина большего порядка малости, чем .

Определение 2.17 Пусть и -- бесконечно малые при базе и

Тогда бесконечно малая называется эквивалентной бесконечно малой при базе . Это обозначается следующим образом:

Очевидно, что если величина эквивалентна величине , то они имеют один и тот же порядок малости (так как при этом ). Кроме того, свойство двух бесконечно малых величин быть эквивалентными, то есть отношение , (так же, как и отношение ) рефлексивно, транзитивно и симметрично. А именно, имеет место

Предложение 2.4 Если при базе бесконечно малая эквивалентна бесконечно малой , то и эквивалентна :

(S )



Если две бесконечно малых и эквивалентны, и две бесконечно малых и тоже эквивалентны при базе , то две величины и также эквивалентны при базе :

(T )



Кроме того, величина эквивалентна себе самой:

(R )



Доказательствоповторяет доказательство предложения 2.2. Нужно только учесть, что .

Итак, отношение эквивалентности обладает свойствами симметричности (S ), транзитивности (T ) и рефлексивности (R ) и, следовательно, разбивает множество всех бесконечно малых при данной базе величин на классы эквивалентных между собой бесконечно малых. Эти классы более мелкие, чем классы бесконечно малых величин одного порядка малости, на которые то же самое множество бесконечно малых разбивается отношением .

Пример 2.35 Согласно первому замечательному пределу, Это означает, что

Кроме того, в примере 2.20 мы показали, что Это означает, что

Польза для вычисления пределов от использования эквивалентности бесконечно малых, а также от бесконечно малых большего порядка выражается следующими утверждениями.

Предложение 2.5 Пусть существует предел где и -- бесконечно малые при базе . Пусть также и . Тогда существует предел

то есть бесконечно малые как в числителе, так и в знаменателе неопределённости вида можно заменять на эквивалентные им бесконечно малые: величина предела от этого не изменится.

Доказательство. Для доказательства напишем такое равенство:

и заметим, что эквивалентность величин и , и означает, что первый и последний пределы в правой части этой формулы равны 1.

Совершенно так же доказывается уточнение доказанного только что предложения. Это уточнение означает, что заменять эквивалентными можно не только числитель или знаменатель целиком, но и любой бесконечно малый множитель в числителе или знаменателе:

Предложение 2.6 Пусть , и существует предел

Тогда и можно заменить на эквивалентные, и значение предела не изменится, то есть

Предложение 2.7 Пусть , и существует предел . Тогда существует предел

то есть бесконечно малые большего порядка можно отбрасывать как в числителе, так и в знаменателе неопределённости вида величина предела от этого не изменится.

Доказательство. Согласно предложению 2.5, достаточно доказать, что если , то . Но это следует из такой цепочки равенств:

Пример 2.36 Вычислим предел

Для этого заметим, что, как мы проверяли выше, -- величина большего порядка малости, чем . Аналогично проверяется, что -- величина большего порядка малости, чем . Поскольку слагаемые большего порядка малости можно отбросить, то

Далее, поскольку , очевидно, эквивалентен (согласно первому замечательному пределу), а эквивалентен , то последний предел можно упростить, заменив бесконечно малые в числителе и знаменателе на эквивалентные им, а затем сократить на :

При вычислении пределов часто бывают полезны также следующие два утверждения.

Предложение 2.8 Пусть и . Тогда:
1)
и
2) при любом (в случае, если степень определена только при , нужно потребовать, чтобы выполнялось неравенство .

(Заметим, что второе утверждение не следует из первого, поскольку -- не обязательно целое число.)

Доказательство. Первое утверждение означает, согласно определению эквивалентности, что

Характеристики

Тип файла
Документ
Размер
1,54 Mb
Тип материала
Высшее учебное заведение

Список файлов учебной работы

Много всякого и полезного по матану
Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6376
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее