Дифференцируемость функции (1017811)
Текст из файла
Дифференцируемость функции:
Пусть функция f имеет производную в точке х (конечную): limx0y/x=f'(x). Тогда y/x для достаточно малых x можно записать в виде
суммы f'(х) и некоторой функции, которую мы обозначим через (x) и которая обладает тем свойством, что она стремится к нулю вместе с х: y/x=f'(x)+ (x) (при (x)0, x0) и приращение f в точке х может быть записано в виде y=f'(x)x+x(x) (при (x)0, x0) или y=f'(x)x+o(x)x0 [1]. Ведь выражение о(x)x0 понимается как функция от x такая, что её отношение к x стремится к нулю вместе с x.
Определение: Функция f наз. дифференцируемой в точке х, если её приращение y в этой точке может быть представлено в виде y=Ax+o(x)x0 [2],
где, А не зависит от x, но вообще зависит от х.
Теорема №2: Для того, чтобы функция f была дифференцируемой в точке х, т.е. чтобы её приращение в этой точке представлялось по формуле [2], необходимо и достаточно, чтобы она имела конечную производную в этой точке. И тогда A=f'(x).
Таким образом, сказать, что f имеет производную в точке х или f дифференцируема в точке х – это одно и то же. Поэтому процесс нахождения производной наз. ещё дифференцированием функции. Доказательство теоремы №1: Достаточность условия доказана выше: из существования конечной производной f'(х) следовала возможность представления y в виде [1], где можно положить f'(x)=A. Необходимость условия: Пусть функция f дифференцируема в точке x: Тогда из [2], предполагая x0, получаем y/x=A+(o(x)/x)x0=A+o[1]x0. Предел правой части при x0 существует и равен А: Это означает, что существует производная f'(x)=A.
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.