Главная » Просмотр файлов » 6Simulation systems Лекция 19 Монте-Карло

6Simulation systems Лекция 19 Монте-Карло (1014327), страница 3

Файл №1014327 6Simulation systems Лекция 19 Монте-Карло (Материалы к лекциям) 3 страница6Simulation systems Лекция 19 Монте-Карло (1014327) страница 32017-06-17СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Следует отметить, что программы выработки случайных значений равномерно распределенной в интервале [0,1] величины  имеются в составе общего программного обеспечения любой современной вычислительной системы.

Возможности такой программы можно расширить в направлении выработки значений независимых случайных величин, распределенных по любому закону.

Наибольший интерес представляет нормальный закон распределения. По этому закону распределены параметры многих технических объектов. При статистическом анализе для тех параметров, для которых отсутствуют сведения о законе распределения, часто предполагается именно нормальное распределение.

9.2.3.Обработка результатов статистического анализа

Результаты статистического анализа должны быть представлены в виде гистограмм выходных параметров yi и оценок числовых характеристик их распределений (оценки математического ожидания Мi и среднеквадратичного отклонения ).

После выполнения N испытаний Мi и оцениваются по формулам:

Mi = ;

При постановке задачи статистического анализа важен правильный выбор числа испытаний N; при большом N увеличиваются затраты времени; малые N приводят к недостаточной точности анализа.

При использовании алгоритмических математических моделей главным фактором, определяющим число испытаний N, является машинное время статистического анализа, и количество вариантов N обычно выбирается в пределах 500-2000. В случае более простых аналитических моделей число испытаний N чаще назначают, исходя из точностных соображений.



9.3. Моделирование методом Монте-Карло задач вычисление интегралов



9.3.1. Способ усреднения подынтегральной функции.

В качестве оценки определённого интеграла принимают

,

где n – число испытаний; - возможные значения случайной величины X, распределённой равномерно в интервале интегрирования , их разыгрывают по формуле , где - случайное число.

Дисперсия усредняемой функции равна

,

где , . Если точное значение дисперсии вычислить трудно или невозможно, то находят выборочную дисперсию (при n>30) , или исправленную дисперсию (при n<30) , где .

Эти формулы для вычисления дисперсии применяют и при других способах интегрирования, когда усредняемая функция не совпадает с подынтегральной функцией.

В качестве оценки интеграла , где область интегрирования D принадлежит единичному квадрату , , принимают

, (*)

где S – площадь области интегрирования; N – число случайных точек , принадлежащих области интегрирования.

Если вычислить площадь S трудно, то в качестве её оценки можно принять ; в этом случае формула (*) имеет вид

,

где n – число испытаний.

В качестве оценки интеграла , где область интегрирования V принадлежит единичному кубу , , , принимают , где V – объём области интегрирования, N – число случайных точек , принадлежащих области интегрирования.

Если вычислить объём трудно, то в качестве его оценки можно принять , в этом случае формула (**) имеет вид , где n – число испытаний.

Задача: найти оценку определённого интеграла .

Решение. Используем формулу . По условию, a=1, b=3, . Примем для простоты число испытаний n=10.Тогда оценка , где возможные значения разыгрывается по формуле .

Результаты десяти испытаний приведены в таблице 1.

Случайные числа взяты из таблицы приложения.

Таблица 1.

Номер i

1

2

3

4

5

6

7

8

9

10

0,100

0,973

0,253

0,376

0,520

0,135

0,863

0,467

0,354

0,876

1,200

2,946

1,506

1,752

2,040

1,270

2,726

1,934

1,708

2,752

2,200

3,946

2,506

2,752

3,040

2,270

3,726

2,934

2,708

3,752

Из таблицы 1 находим . Искомая оценка



9.3.2.Способ существенной выборки, использующий «вспомогательную плотность распределения».

В качестве оценки интеграла принимают , где n – число испытаний; f(x) – плотность распределения «вспомогательной» случайной величины X, причём ; - возможные значения X, которые разыгрывают по формуле .

Функцию f(x) желательно выбирать так, чтобы отношение при различных значениях x изменялось незначительно. В частности, если , то получим оценку .

Задача. Найти оценку интеграла .

Решение. Так как , то в качестве плотности распределения «вспомогательной» случайной величины X примем функцию . Из условия найдём . Итак, .

Запишем искомый интеграл так:

.

Таким образом, интеграл I представлен в виде математического ожидания функции . В качестве искомой оценки примем выборочную среднюю (для простоты ограничимся десятью испытаниями):

,

где - возможные значения X, которые надо разыграть по известной плотности . По правилу (для того, чтобы разыграть возможное значение непрерывной случайной величины X, зная её плотность вероятности f(x), надо выбрать случайное число и решить относительно уравнение

, или уравнение ,

где a – наименьшее конечно возможное значение X), имеем . Отсюда находим явную формулу для разыгрывания возможных значений X:

.

В таблице 2 приведены результаты 10 испытаний.

Сложив числа последней строки таблицы 2, получим . Искомая оценка равна .

Таблица 2.

Номер i

1

2

3

4

5

6

7

8

9

10

0,100

0,973

0,253

0,376

0,520

0,135

0,863

0,467

0,354

0,876

0,140

0,980

0,326

0,459

0,600

0,185

0,894

0,550

0,436

0,905

1,150

2,664

1,385

1,582

1,822

1,203

2,445

1,733

1,546

2,472

1,140

1,980

1,326

1,459

1,600

1,185

1,894

1,550

1,436

1,905

1,009

1,345

1,044

1,084

1,139

1,015

1,291

1,118

1,077

1,298

Сложив числа последней строки таблицы 2, получим . Искомая оценка равна .

9.3.3. Способ «выделения главной части».

В качестве оценки интеграла принимают

,

где - возможные значения случайной величины X, распределённой равномерно в интервале интегрирования , которые разыгрывают по формуле ; функция , причём интеграл можно вычислить обычными методами.

Задача. Найти оценку интеграла .

Решение. Так как , то примем . Тогда, полагая число испытаний n=10, имеем оценку

.

Выполнив элементарные преобразования, получим

.

Учитывая, что a=0, b=1, возможные значения разыграем по формуле . Результаты вычислений приведены в таблице 4.

Номер i

1

2

3

4

5

6

7

8

9

10

0,100

0,973

0,253

0,376

0,520

0,135

0,863

0,467

0,354

0,876

0,010

0,947

0,064

0,141

0,270

0,018

0,745

0,218

0,125

0,767

1,0101,947

1,064

1,141

1,270

1,018

1,745

1,218

1,125

1,767

1,005

1,395

1,032

1,068

1,127

1,009

1,321

1,104

1,061

1,329

2,000

1,843

2,000

1,995

1,984

2,000

1,897

1,990

1,997

1,891

Сложив числа последнего столбца таблицы 4, найдём сумму 19,597, подставив которую в соотношение , получим искомую оценку интеграла

Характеристики

Тип файла
Документ
Размер
474,39 Kb
Тип материала
Высшее учебное заведение

Список файлов лекций

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6489
Авторов
на СтудИзбе
303
Средний доход
с одного платного файла
Обучение Подробнее