14 (1013746), страница 2

Файл №1013746 14 (Термодинамика Дзюбенко Б.В) 2 страница14 (1013746) страница 22017-06-17СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

где ab0 – теоретическая зависимость (2); abc – действительная зависимость, полученная опытным путем; I – подкритическая область истечения (дозвуковая): ; II – надкритическая область истечения (сверхзвуковая): .

В точке «b » скорость истечения газа равна местной скорости звука W=a, и скорость распространения возмущений вверх по потоку , т.е. волны возмущений не проходят вверх по потоку от среза сопла при дальнейшем уменьшении величины =р2/р1.

14.5. Особенности истечения газа через суживающиеся сопла

На этом рисунке показан характер изменения параметров потока газа вдоль сопла. При этом изменение энтальпии газа преобразуется в кинетическую энергию потока:

.

При уменьшении отношения давлений =р2/р1 скорость истечения растет, а скорость звука уменьшается. При р2=рк скорость истечения Wк2, где рк – критическое давление; Wк – критическая скорость.

Скорость истечения газа, равная местной скорости звука, называется критической скоростью. Критическая скорость Wк – это максимальная скорость, которую может иметь газ при истечении через суживающееся сопло Wк=f(p1, v1). Критическая скорость наступает при критическом отношении давлений . Величина определяется из равенства:

, (1)

т.е.: .

Отсюда имеем:

. (2)

Учитывая соотношение между параметрами в адиабатном процессе:

, (3)

и приравнивая правые части уравнений (2) и (3), получим:

. (4)

После преобразований (4) окончательно получим:

. (5)

Критическое отношение давлений зависит от показателя адиабаты к. При к=1,66 , при к=1,4 , при к=1,3 .

Для идеального газа . Следовательно, можно сделать вывод, что при истечении газа через суживающиеся сопла его давление не может уменьшиться более, чем в два раза, т.е. р2 р1.

При этом формулы для расчета критических параметров имеют вид:

- критическая температура

, ;

- критическая плотность

;

- критическая скорость истечения

или .

Рассмотрим три характерных случая истечения через суживающиеся сопла.

1.В первом случае наблюдается полное расширение от начального давления р1 на входе в сопло до давления среды р2, а скорость истечения меньше скорости звука (W<a). Скорость истечения рассчитывается по формуле:

, м/с,

т.е. . Чем больше удельная газовая постоянная R и выше температура Т1 и чем меньше , тем больше скорость истечения.

Для расчета расхода газа G используется формула:

, кг/с

т.е. G~ .

Во втором случае наблюдается полное расширение газа от р1 до р2, а скорость истечения равна критической скорости:

, м/с.

Секундный расход газа при этом равен:

, т.е. .

В этом случае сопло работает на полной своей производительности и при дальнейшем понижении давления р2 скорость истечения и расход газа не будут изменяться (W=Wк, G=Gmax).

В третьем случае не наблюдается полного расширения газа и газ истекает в среду, имея давление , где р2 – давление окружающей среды ( ). Это наглядно видно из следующих рисунков:

где площадь а1 ba=l0 – располагаемая работа; площадь b сb – потерянная работа

14.6. Истечение газа из сопла Лаваля. Расчетные и нерасчетные режимы работы

При давлении на выходе из сопла Лаваля р2<рк , скорость истечения W=W2>a2, где a2 – местная скорость звука в выходном сечении сопла. При этом отношение давлений и весь перепад давлений от давления р1 на входе в сопло до давления р2 на выходе из сопла идет на увеличение кинетической энергии струи газа, вытекающей из сопла Лаваля.

Характер изменения параметров вдоль сопла Лаваля и изображение процесса истечения из этого сопла в p-v и T-s координатах изображены на следующих рисунках:

При расчете сопла Лаваля задаются параметры газа на входе в сопло: р1, v1, T1, расход газа G и давление окружающей среды р2. При этом скорость истечения определяется по обычной формуле:

, м/с.

Затем определяется площадь критического сечения сопла по формуле для расчета расхода газа:

, кг/с .

Площадь выходного сечения сопла f2 определяется, используя обычную формулу для расчета расхода газа:

, кг/с .

График изменения скорости истечения газа и его расхода в зависимости от отношения давлений представлен на следующем рисунке

где .

Действительная скорость истечения меньше теоретической скорости истечения w из-за потерь энергии на трение: , где - коэффициент скорости, определяемый из опыта. Коэффициент связан с кпд сопла формулой:

.

Понятие о расчетных и нерасчетных режимах сопла Лаваля

На расчетном режиме давление на срезе сопла – рс.расч равно давлению на заданной расчетной высоте у-ру, т.е. рс.расч=ру. При этом все падение давления от pкс до ру происходит в сопле Лаваля, где ркс – давление газа в камере сгорания ЖРД (на входе в сопло). Тогда тяга ЖРД будет равна: R=GWc, [H], где скорость истечения , м/с, Rуд – удельная тяга двигателя в международной системе единиц измерения СИ; G, кг/с – секундный расход газа через сопло.

На нерасчетном режиме работы сопла с недорасширением газа давления рс.расч больше давления на нерасчетной высоте . При этом на срезе сопла устанавливаются расчетные параметры состояния и скорость истечения, а падение давления от рс.расч до происходит вне сопла и тяга ЖРД равна: .

На нерасчетном режиме с перерасширением газа давление рс.расч меньше давления на нерасчетной высоте , т.е. .

При этом возможны два случая:

1) при процесс расширения газа в сопле расчетной, а за пределами сопла происходит скачок давления до величины . Величина - отрицательна;

2) при скачок давления проникает внутрь сопла и сопровождается отрывом потока от стенок, а формула для расчета тяги ЖРД – недействительна.

Изобразим эти режимы для сопла Лаваля на следующем рисунке:

Для дозвукового сопла эти режимы имеют вид:

14.7. Адиабатное дросселирование газа и пара

Процесс течения газа или пара через местное гидравлическое сопротивление, например, диафрагму в трубопроводе при отсутствии теплообмена ( ) называется адиабатным дросселированием газа или пара. Этот процесс течения газа представлен на следующем рисунке:

При дросселировании скорость газа в узком сечении диафрагмы увеличивается, а температура уменьшается. После прохождения диафрагмы скорость и температура в сечении II-II восстанавливаются. При этом скорость , а температура Т2 для идеального газа Т2=Т1 и для реальных газов и паров Т2 Т1. Тогда из уравнения 1-го закона термодинамики имеем изменение энтальпии при дросселировании:

, т.е. .

Таким образом, процесс дросселирования газа 1-2 является изоэнтальпийным (h=const), как показано на следующем рисунке:

В процессе 1-2 происходят необратимые явления (трение, вихреобразование) и энтропия растет: .

Из объединенного выражения 1-го и 2-го законов термодинамики: , при dh=0 имеем: .

Поскольку и , то , т.е. давление при дросселировании газа может только уменьшаться, а его удельный объем – увеличиваться, т.е. .

Величина потерь давления в процессе дросселирования газа зависит от природы и состояния газа, а также от его скорости, относительного сужения канала и других параметров. Функция убывающая и ее производная при величина отрицательная, т.е. . Таким образом, можно сделать вывод, что при дросселировании газа: , а температура газа либо увеличивается, либо уменьшается, либо остается неизменной (для идеального газа и для точек инверсии в случае реального газа Т2=Т1).

14.8. Эффект Джоуля-Томсона

Эффект Джоуля-Томсона – это явление изменения температуры газа при адиабатном дросселировании, когда происходит расширение газа без совершения внешней работы и без теплообмена за счет преодоления гидравлического сопротивления . При этом затрачивается работа проталкивания :

Получим дифференциальное уравнение эффекта Джоуля-Томсона. Для этого запишем функцию состояния - энтальпию в виде: .

Ее дифференциал – полный дифференциал, равный:

. (1)

Удельная теплоемкость при p=const по определению равна:

. (2)

Производную , входящую в (1), получим из объединенного выражения 1-го и 2-го законов термодинамики:

. (3)

Характеристики

Тип файла
Документ
Размер
1,02 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6547
Авторов
на СтудИзбе
300
Средний доход
с одного платного файла
Обучение Подробнее