Главная » Просмотр файлов » В. П. Исаченко, В.А. Осипова, А. С. Сукомел - Теплопередача

В. П. Исаченко, В.А. Осипова, А. С. Сукомел - Теплопередача (1013600), страница 14

Файл №1013600 В. П. Исаченко, В.А. Осипова, А. С. Сукомел - Теплопередача (В. П. Исаченко, В.А. Осипова, А. С. Сукомел - Теплопередача) 14 страницаВ. П. Исаченко, В.А. Осипова, А. С. Сукомел - Теплопередача (1013600) страница 142017-06-17СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 14)

При зтом произнелем замену бд/г(г=и. Тесла уравнение (2-143) запишетсяг ф+-"„+ д- -О гби+иг)г+ д гг(г=б. л После интегрирования получим: +, бы ды С, ж г' Ш д,г С, После второго интегрирования получим: дг +С 1п г ( С» (2.14о) (2-143) гле С, и Сг онрепеляются из граничных условий (2-144).

Пря г=б из (2-143) находим, что СЛ=О и при г=г, (иф(г), = — д,г„(йл. Полставив последнее выражение в граничные условия (2.144), нолучим: 2,"л = а (1.— 1.) х Из (2-!46) находим См С,=д -(-~" +де' . Подставив С, н С, в уравнение (2-146). получше 1, ) дле+ф(г;,), (2-147) (дгт)М Х 4Л Плотность теплового потока на понерхности цижшдраг д = а (дч — дщ) = — г. тл-147') (2-143) Полученное уравнение дает возможность вычислить температуру любой точки циливлрического стерткня.

Оно показывает, чго распрелеле. иие температуры в круглом стержне подчиняется параболическому закову. Из уравнения (2-147) при г=б найдется температура иа оси Пи. линнра: дегег= — 2егде (1+ЬΠ—, 1+ — 1'= — — д.г',+С. Ь, ! з о„ (2-15!] Значение постоянной С определнется из граничных условий. При Ь г=О имеем 1=1, и С=1,+ — 1',. Подставляя это значение в уравнение (2-15!) и решая его относительно 1, получаем следугощую зависимость для теыпературной кривой: ь рг ("-+ь) згь (2-!541 е) Теплопроеодгшсгь цилиндрической стенки Рассмотрим бесконечно длинную пилнпдрическую степку (трубу) с внутренним радиусом гь наружным гз н постоянным коэффициентом теплопроводности 1.. Внутри этой стенки имеются равномерно распределенные нсючвнки тюлоты производительностью д,.

В такой стенке температура будет наменяться только в направле. нии радиуса а процесс теплапроеодности будет списываться уравнением (2-143): л'г 1 нг Л г Лг К вЂ” + —, —;+ — '=О. Интеграл этого уравнения предстанзеи выражением (2-!46): 1= — ~'-'-+С, 1п г+ Се 4х Постоянные интегрирования Сг и Се в последнем уравнении определяются из граничных условий.

Рассмотрим случаи, когда теплоотдаю. УО Полный тепловой поток с поверхности пгшиндра. а=дР—..- Кз-Рмг,)=д„ю'„1. (2-146') Из уравнения (2-148) следует, что плотность теплового потока за. вяшгт толька от производнтельйости внутренних истоцников и от велиШны внешней поверхности ге, через которую проходит тепловой поток. Пусть теперь заданы граничные условия пернаго рида, т.

е. температура поверхноств цилиндра 1,. Эти условия соответствуют частному случаю предыдущей задачи, если полагать, что коэффициент теплоотдачи и-ьео. При этом, очевнлно, 1. =— 1,. Тогда уравнение (2-147) примет ннд: +4х [ Я (2-149) Телшература на осн цилиндра (при г=О): + 4Х ' (2150) Если неабхолима учитывать заннсямость коэффициента теплапровадносгн ат температуры, заданную п вяде Д(1) =да (1+Ы), то, интшрир)м зависимосп щей поверхностью являются только внутренняя, илн только наружная поверхностен или обе поеерхпос»в одновременно.

а) Теплота отводится только через наружную поверхностьь» ру бы. Будем рассматривать случай, когда заданы граничные условия третьего рада, т. е. температура окружакпцей среды со стороны наружной поверхности г,» и постоянный коэффициент тепле- отдачи на внешней поверхности трубы (рис. 2-26). Прн зтои граничные условия запишутся следую>ции образом: гжч при г=г, 4=О иля ~ — ) =О; (,«.~, >— прис г, (1, 1) Из уравнения (2-146) получим." ж Р„»,С, 22« ' Прн г=с ~ — ) = — - -'+ — '=О, откуда С =,".— '.

С, Р » вв' При г=гз из уравнения (2-146) с учетом найденного выражен>ги для С, получим; (а) С учетом находим: Р— а(! 1 ) Ь~2 [! (г Л (2-156) Температура на внутренней поверхности стенки найдется из уравнении (2-163) при подстановке и него значения г=г»> 1„=1 -) — ',' [1 — ( — ") 1+ — '„""„*' [1+ ( — "')'2(п —" — ( — ")*1, (2166) Пусть теперь заданы граничные условия первого рода, т. е. темпе- ратура теплоотдающей поверхности 1,з. Эти условия можно рассматри- 71 1ы — ! + Р»г Р»» 2> 2», (б) Приравнивая (а) и (б), находим: С =1 + — + — — — — — ' — '' !пг,. Рг» йг» Р» 'и» 2 11 2» г» ж Подставляя найденные значения С» и Сз в уравнение (2-146), получаем выражение для температурного поля: 1=1,+ Р'" [1 — ( — ") 1+Р(ну* [!+( г') 21п — ' — Я|.

(2-!63) Для внешней теплоотдающей поверхности (при г=г,) "»*+ 2 [ ( )~ Плотность теплового потока на теплоотдающей поверхности найдется как вать кан частный случай данной задачи, когпа коэффициент теплоотдачн на поверхности достаточно велик (о 'со). Тогла температура жидкости будет равна температуре поверхности трубы. С учетом сказанвого уравнение (2-!БЗ) принимает виде 1=.!.,+'~* [!+ Я йу —,' - ( —,' )']. (2.157) Полагая в этом уравнении г=г, и 1=.!и, находим падение температуры в стенке: Г„ — г„'= — '— [!1 — ') — 2 !п —" — 1].

М (2-156) б) Теплота отводятся только через внутреннюю поверхностьь трубы (рис. 2-27). При заданных коэффициенте тепло- %- Рис. 2.27. Отвод теплым ерев внутреиието поверкность нилиидричесиоз сжа«в при наличии внутренник источников пилаты. Рж. 2-Ж Тшловраваднаеп, одно. родного пилнвдрн. чжгаго стерпи» при тмжчтм ввутреникк источников теплоты. Рве.

2-Ж Отвод жпжты еров верупную паверкнаегь пилиндрнте. скад сте к ри ивин и внутре иик ипочннкав теплоты. отпачи и на внутренней поверхности и температуре среды Уы, граничиьщ условия аапищ1'тсн: глг ч при г г, 1-ю)! = — — (! — 1,); гет х ),-, Аналотично предыдущему случпо из этих уравнений определяютсн тюстоянные Ст и Св в уравнении (2.146). После определенна постоянных и подсгановни их в уравнение (2-146) получим: 7=! +2~' [( — *) — 1]+е"„' ]2 !и — +(~') — ( — ) ] ° (2-!59! Перепад температур между средой и теплоотдающей поверхностьи получим, если в уравнение (2-159) подставим значение текущей каор 22 ляааты, равное гь Тагла (2.166) Для случая, когда аллана температура теплоатдающей поверхности )ы, чта соответствует случа1о и†~-оо, уравнение (2-!69) принимает впд: 1=)ь+ у~б — ' [2 !и г + ( г' ) —.

( — ) ~. (2-161) Вычнтав соответственно левые и правые частн уравнений, получаем: 1„— 1„='," [( —;*) — [ — )*+2 йл — „'— 2 1~. (6) двух последних Это уравнение необходимо решнть относительно го Решив, шшучим: ах <Гы — Гы) Г Ч„жв — 2 1в— г гг Ч 21п— го Г, Полагая в атом уравнении г=гз н соответственно 1=!ов получаем полный температурный напор в стевке: 1~ — 1„= ч— „'! 21 — '+( — ') — 1!. (2-!62) в) Теплота отводятся череп внут р синюю н наружную попер хностн. В случае, когда теплота отдастся окружающей срепе как с внутренней, так н с внешней поверхности, должен существовать максимум температуры внутре степан.

Иаотермнческзя по- св верхность, соответствующая макспмальвой температуре 1о, разделяет цилввдрнческую стенку на два слои. Во внутреннем слое тепло пере- гд дается внутрь трубы, во внешнем --наружу. 1', за Максимальное значение температуры соотвстствует условню о(ай(с=О, п следовательно, 2=0. Таким образом, для решения данной задачи пчс. 2-пь теплого ввт- можнО вспальаовать уже полученные выше саат- таезявх заточников от. ношения.

Для зтаго нужно знать раднус го (рнс. 2-28), соответствуюшйй максимальной темпера- шоа шшвк туре 1о. Согласно уравнениям (2-156) н (2-!62) максимальвые перепады температур ва внешнем я внутреннеч слоях определяются уравненив- Подставив вычисленное из уравнения (2-163) значение гв в выражения (а» и (б), найлем максимальную температуру в рассматриваемой стенке. Для нахождения распределения температуры во внутреннем слое в уравнение (2-161] поаставляютсэ вначения текущей коорлннаты «,< <г<гв, а для нахождения распределения температуры во впшпнем слое в уравнение (2-157) подставляютси значения гв<г<ш. Если температуры внешних поверхностей цилиндрической стенки Пв н 1ы равны, то ур~ внеиие (2-163) упрощается. В этом случае гв= (2-163') Х!и— т.

е. Гх зависит только от размеров цвшинврнческой стенки и не зависят от тепловых условий. Например, прн гз 2 н ге=! гв 1,46. Если температуры поверхностей цилинпричесной стенки 1ы и 1,а неизвестны, но известны температуры жидкостей 1, и 1„ч виугри и вне трубы н коэффициенты теплоотдачи щ и пь то для определения гв к уравнению (2-163) необходимо добавить уравнения дд = а, (1„.

-1,) 2вгб (в! гдв дв6 Е п(гзг — ггт); ба=4,п(гьг — гзв). Для определения гэ нужно решать уравнения (в) совместно с уравнением (2-!63). Глава гдвгвв НЕСТАЦИОНДРНЫЕ ПРОЦЕССЫ ТЕПЛОПРОВОДНОСТИ з-т. Оыцив попо!дания В шой главе рассматривается перенос теплоты за счет теплопро. водности при отсутствии внутренних источников теплоты, когда темпе.

ратура системы изменяется ие только от точки ь точке, ио и с течением времени Такие процессы теплопроволности, когда поле температуры в теле изменяется не только в пространстве,но и во времена, называют нестзцнопарпыми. Они имеют место при нагревании (охлаждении) различных заготовок и пзлелий, производстве стекла, обжиге кирпича, вулканизацни резины, пуске н остановке различных тепчообменных устройств, энергетических агрегатов н т. д. Среди практических задач несгащюнариой теплопроводности важнейшее значение имеют лве группы процессов: а) тело стремится к теп ловоиу равновесию; б) температура тела претерпевает периодические изменения.

1( первой группе относятся процессы прогрева или охлаждения тел, помещенных в среду с заданным тепловым состоянием, например прогрев болванки в печи, охлагкдение металлических брусков и чушек, охлаисдепие закаливаемой детали и т. п. Ко второй группе относятся процессы в периодически действующих подогревателях, например тепловой процесс регенераторов, насадка 74 которых то нагренается дымовыми газами, то охлажпается воздухом. На рис. 3-! показан хараитср кривых, полученных прн нагревании алнороднаго твердого тела в среде с пасюянной температурой 1 . По мере нагрева температура в каждой точке асимптатически приближается к температуре нагревак>щей среды. Наиболее Г>ыстро изменяется температура точек, лежащих вблизи поверхности тела, С увеличением времени прогрева эта разность будет уменьшаться и теореп>чески через достаючно большой отрезок времени ана будет равна нулю.

Характеристики

Тип файла
DJVU-файл
Размер
4,64 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6390
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее