rpd000010485 (1011031), страница 4
Текст из файла (страница 4)
В начале находятся параметры в газогенераторе. Горение в газогенераторе осуществляется с большим избытком горючего, температура не должна превышать 1100º К. при такой температуре продукты сгорания находятся в неравновесном состоянии, а следовательно, рассчитать их параметры по обычной методике невозможно. Для восстановительного газогенератора на фторе и водороде в [4] приведены следующие экспериментальные параметры: α=0,06, R=2052, Т=1051º К, n=1,386, Ср=2154 кДж/кг*ºК (выбор произведён для наименьшей температуры).
На втором этапе проводится ряд приближённых расчётов по схеме без дожигания при заданном значении давления и найденных с учётом поправки на давление значениях энтальпии компонентов. Значения энтальпии находятся по формуле:
Полная методика определения энтальпии изложена в [1].
где
– энтальпия компонента при заданной температуре,
– давление в камере сгорания.
С учётом этих поправок энтальпии будут равны:
Выбор предварительного значения α производится по наибольшему значению произведения (RT)кс. Выберем α=0,24
На третьем этапе производится серия уточняющих расчётов для схемы с дожиганием. Для этого зададимся значениями:
где
– потери от насосов до ГГ,
– потери от ГГ до КС,
– КПД насосов и турбины.
Далее рассматривается баланс мощностей насосов и турбины:
где
давления на входах в насосы.
Задаваясь значениями
, построим графики
и определим их пересечение.
После этого найдём
, сработанную на турбине:
Определим новую энтальпию генераторных газов после срабатывания на турбине и реальный состав (условную формулу) горючего, поступающего в КС.
Далее проводится повторный термодинамический расчёт параметров в камере сгорания и находится новое оптимальное значение αкс, после чего оно сравнивается с предыдущим. Если:
то примем новое значение αкс как искомое, в противном случае уточняющий расчёт проводится заново, с новыми параметрами.
После получения αкс проводится расчёт истечения по каналу при известном значении n и находятся параметры на срезе сопла.
Полученные данные приведены в таблице 2:
Результаты термодинамического расчета Таблица 2
| Сечение камеры | Горение в камере | Срез сопла |
| Давление в сечении P, МПа | 15 | 0,06 |
| Температура Т, 0К | 3322,97 | 885,583 |
| Молярная масса Мг, кг/кмоль | 9,90011 | 10,0173 |
| Коэффициент избытка окислителя α | 0,24 | 0,24 |
| Показатель изоэнтропы расширения n | - | 1,315 |
Расчёты проведены в программе «Термодинамика».
4.2 Газодинамический расчет КС
Целью газодинамического расчета является определение параметров истекающего газового потока в характерных сечениях КС, удельного импульса ДУ основного блока, геометрических размеров критического сечения и среза сопла.
4.2.1 Газодинамический расчёт идеального канала
1) Расчет термодинамических величин в канале и на его срезе.
Наедем газовую постоянную:
где R0 = 8314 Дж/моль·кг - универсальная газовая постоянная;
Определяем удельный объем:
По результатам программы «Термодинамика»:
Показатель процесса:
2) Расчет параметров критического сечения:
Степень расширения в критическом сечении канала:
Определим скорость потока в критическом сечении канала:
Удельный объём продуктов сгорания:
Находим удельную площадь критического сечения:
3) Расчет параметров на срезе сопла:
Определяем степень расширения на срезе канала:
Скорость потока на срезе канала,
,
По результатам программы «Термодинамика»:
Определяем удельную площадь сопла:
Геометрическая степень расширения сопла,
4) Расчет параметров двигателя:
Найдем удельный импульс на земле:
Расход топлива:
Определяем удельный импульс в пустоте:
Найдем тягу в пустоте:
Площадь критического сечения и среза сопла:
Определим расходный комплекс и коэффициент тяги:
4.2.2 Газодинамический расчёт реального канала
1). Расчет коэффициентов потерь
Коэффициент, учитывающий потери, связанные с недогоранием топлива: φк=0,97.
Коэффициент, учитывающий потери на рассеивание потока: φα = 0,992 для αс=10º - угла полураскрытая сопла канала.
Коэффициент, учитывающий все остальные потери в закритической части канала: φw∞ = 0,98.
Коэффициент, учитывающий потери в закритической части канала в пустоте, φс∞:
Коэффициент, учитывающий потери в закритической части канала на земле, φс0:
где, Δφс коэффициент, учитывающий влияние земного противодавления:
2). Расчет реальных параметров двигателя
Удельный импульс в пустоте:
Удельный импульс на земле:
Расход топлива:
Расход горючего и окислителя:
Площадь критического сечения и среза канала:
Диаметр критического сечения и среза канала:
Тяга в пустоте:
Расходный комплекс и коэффициент тяги:
5. Определение габаритов топливных баков
Масса топлива, необходимого для обеспечения работы двигательной установки в течение времени полета определяется как:
,
где
массовый расход топлива ДУ;
кг/с;
коэффициент запаса топлива;
;
– время работы ДУ;
с;
Дополнительный запас топлива в баках, учитываемый коэффициентом
, необходим для гарантированного обеспечения работы ДУ в течение заданного времени
при любых допустимых отклонениях расходов компонентов.
Масса топлива, необходимая для обеспечения работы ДУ равна:
кг;
Масса горючего:
кг;
Масса окислителя:
кг;
Объем бака горючего:
м3;
Объем бака окислителя:
м3;
Коэффициент объема бака
учитывает объём газовой подушки, а так же наличие внутри бака конструкционных элементов
;
Для определения осевых габаритов баков ракеты в первом приближении, форма баков принимается цилиндрической.
м;
м;
где d – диаметр ступени ракеты, равный 1,5 м.
В действительности, форма баков отличается от цилиндрической. Это связано с кривизной днищ. Однако учет влияний этих факторов затруднен до проведения оценки габаритов всех элементов двигательной установки. Данные об осевых габаритах баков ракеты определяют высоту столба жидкого компонента, необходимую в дальнейшем для определения максимально допустимого числа оборотов ТНА из расчета насоса окислителя на кавитацию.
6. Определение основных параметров и габаритов насосов
6.1 Определение параметров насосов
Окислителем в двигательной установке является жидкий фтор. Для этого компонента целесообразно использовать радиальный шнеко-центробежный насос. Горючим является водород, для которого целесообразно использовать многоступенчатый центробежный насос.
Массовые расходы окислителя и горючего равны:
Из уравнения баланса мощностей известно:
Отсюда найдём реальные мощности насосов:
Потребные мощности насосов можно определить по формулам:
где
– КПД насосов окислителя и горючего, принимаемые приближённо равными 0,65, H – напор насосов:
где
– давления на выходе из насоса и на входе в насос.
Определим эти давления по следующим формулам:
Значения
берутся из расчёта баланса мощностей, значение
так же выбирается, но оно не должно быть меньше, чем
для компонента прокачиваемого через насос. Определим значения
для компонентов.
По [6] для
при температуре
:















