rpd000007961 (1010926)
Текст из файла
Министерство образования и науки Российской Федерации
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования
Московский авиационный институт
(национальный исследовательский университет)
УТВЕРЖДАЮ
Проректор по учебной работе
______________Куприков М.Ю.
“____“ ___________20__
РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (000007961)
Численные методы
(указывается наименование дисциплины по учебному плану)
Направление подготовки | Самолето- и вертолетостроение | |||||
Квалификация (степень) выпускника | Специалист | |||||
Специализация подготовки | 160100.С6, 160100.С3, 160100.С2, 160100.С1, 160100.С4 | |||||
Форма обучения | очная | |||||
(очная, очно-заочная и др.) | ||||||
Выпускающая кафедра | 102, 108Б, 103, 101, 104 | |||||
Обеспечивающая кафедра | 806 | |||||
Кафедра-разработчик рабочей программы | 806 | |||||
Семестр | Трудоем-кость, час. | Лек-ций, час. | Практич. занятий, час. | Лаборат. работ, час. | СРС, час. | Экзаменов, час. | Форма промежуточного контроля |
5 | 144 | 34 | 34 | 0 | 49 | 27 | Э |
Итого | 144 | 34 | 34 | 0 | 49 | 27 |
Москва
2011 г.
РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ
Разделы рабочей программы
-
Цели освоения дисциплины
-
Структура и содержание дисциплины
-
Учебно-методическое и информационное обеспечение дисциплины
-
Материально-техническое обеспечение дисциплины
Приложения к рабочей программе дисциплины
Приложение 1. Аннотация рабочей программы
Приложение 2. Cодержание учебных занятий
Приложение 3. Прикрепленные файлы
Программа составлена в соответствии с требованиями ФГОС ВПО по направлению подготовки 160100 Самолето- и вертолетостроение
по профилям:
160100.С6 Вертолетостроение
160100.С3 Сертификация авиационной техники
160100.С2 Системы жизнеобеспечения и оборудование ЛА
160100.С1 Самолетостроение
160100.С4 Технологическое проектирование высокоресурсных конструкций самолётов и вертолётов
Авторы программы :
Северина Н.С. | _________________________ |
Заведующий обеспечивающей кафедрой 806 | _________________________ |
Программа одобрена:
Заведующий выпускающей кафедрой 102 _________________________ | Декан выпускающего факультета 1 _________________________ |
Заведующий выпускающей кафедрой 108Б _________________________ | |
Заведующий выпускающей кафедрой 103 _________________________ | |
Заведующий выпускающей кафедрой 101 _________________________ | |
Заведующий выпускающей кафедрой 104 _________________________ | |
-
ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ
Целью освоения дисциплины Численные методы является достижение следующих результатов образования (РО):
N | Шифр | Результат освоения |
1 | Умения: практические – разработка алгоритмов решения задач. | |
2 | Навыками программирования в современных средах разработки программных приложений; | |
3 | Владеть элементами математического и функционального анализа |
Перечисленные РО являются основой для формирования следующих компетенций: (в соответствии с ФГОС ВПО и требованиями к результатам освоения основной образовательной программы (ООП))
N | Шифр | Компетенция |
1 | ПКД-1 | Готов к решению сложных инженерных задач с использованием базы знаний математических и естественно-научных дисциплин |
-
СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ
Общая трудоемкость дисциплины составляет 4 зачетных(ые) единиц(ы), 144 часа(ов).
Модуль | Раздел | Лекции | Практич. занятия | Лаборат. работы | СРС | Всего часов | Всего с экзаменами и курсовыми |
Численные методы | Вычислительные методы алгебры | 8 | 8 | 0 | 9 | 25 | 144 |
Численные методы решения нелинейных уравнений и систем нелинейных уравнений | 4 | 4 | 0 | 6 | 14 | ||
Теория приближения функций и её приложения | 6 | 10 | 0 | 9 | 25 | ||
Численные методы решения задач для ОДУ | 8 | 12 | 0 | 20 | 40 | ||
Основы численных методов решения дифференциальных уравнений с частными производными и интегральных уравнений | 8 | 0 | 0 | 5 | 13 | ||
Всего | 34 | 34 | 0 | 49 | 117 | 144 |
-
Содержание (дидактика) дисциплины
В разделе приводится полный перечень дидактических единиц, подлежащих усвоению при изучении данной дисциплины.
1. Численные методы решения систем линейных алгебраических уравнений (СЛАУ)
- 1.1. Норма матрицы и вектора. Согласованность норм. Понятие обусловленности СЛАУ.
- 1.2. Метод Гаусса решения СЛАУ. LU – разложение матриц. Метод Гаусса с выбором ведущего элемента. Матрица перестановок.
- 1.3. Вычисление обратной матрицы с использованием метода Гаусса.
- 1.4. Метод прогонки решения СЛАУ.
- 1.5. Метод простых итераций решения СЛАУ. Достаточное условие сходимости. Погрешность решения.
- 1.6. Метод Зейделя решения СЛАУ.
- 1.7. Собственные значения и собственные векторы матриц, подобные преобразования для произвольных и симметричных матриц.
- 1.8. Оценка спектрального радиуса степенным методом.
- 1.9. Метод вращения нахождения собственных значений и собственных векторов матриц.
- 1.10. QR-алгоритм нахождения собственных значений матриц.
2. Численные методы решения нелинейных уравнений и систем
- 2.1. Нелинейные уравнения. Основные этапы нахождения корней. Метод половинного деления, погрешность.
- 2.2. Метод простых итераций решения нелинейных уравнений, погрешность, геометрический смысл. Достаточное условие сходимости.
- 2.3. Метод Ньютона решения нелинейных уравнений, погрешность, геометрический смысл.
- 2.4. Метод секущих решения нелинейных уравнений, погрешность, геометрический смысл.
- 2.5. Метод простых итераций и метод Зейделя решения систем нелинейных уравнений.
- 2.6. Метод Ньютона решения систем нелинейных уравнений. Модификации метода Ньютона.
3. Методы приближения функций
- 3.1. Общая характеристика задач и методов приближения таблично заданных функций. Единственность интерполяционного полинома.
- 3.2. Интерполяционные полиномы в форме Лагранжа и форме Ньютона. Погрешность.
- 3.3. Интерполяция сплайнами. Построение кубических сплайнов.
- 3.4. Тригонометрическая интерполяция.
- 3.5. Процедура Рунге-Ромберга оценки погрешности численного интегрирования.
- 3.6. Численное интегрирование. Формула Симпсона. Погрешность.
- 3.7. Метод наименьших квадратов.
- 3.8. Численное дифференцирование. Основные формулы. Оценка погрешности.
- 3.9. Численное интегрирование. Формулы прямоугольников и трапеций. Погрешности.
4. Численные методы решения начальных и краевых задач для обыкновенных дифференциальных уравнений (ОДУ) и систем ОДУ
- 4.1. Постановка задачи Коши для ОДУ и систем ОДУ. Метод Эйлера.
- 4.2. Модификации метода Эйлера решения задачи Коши для ОДУ и систем ОДУ.
- 4.3. Семейство методов Рунге-Кутта. Метод Рунге-Кутта IV порядка.
- 4.4. Многошаговые методы. Семейство методов Адамса решения задачи Коши для ОДУ.
- 4.5. Жесткие системы ОДУ. Методы решения.
- 4.6. Постановка краевых задач для ОДУ. Численные методы решения.
- 4.7. Решение краевых задач для ОДУ методом стрельбы.
- 4.8. Решение краевых задач для ОДУ методом конечных разностей.
- 4.9. Неявные методы решения задачи Коши для ОДУ и систем ОДУ.
- 4.10. Процедура Рунге-Ромберга оценки погрешности решения краевой задачи для ОДУ.
5. Численные методы решения дифференциальных уравнений в частных производных
- 5.1. Основные этапы решения уравнений в частных производных конечно-разностным методом.
- 5.2. Постановка начально-краевых задач для уравнения теплопроводности. Основные разностные схемы.
- 5.3. Постановка начально-краевых задач для волнового уравнения. Основные разностные схемы.
- 5.4. Постановка краевых задач для уравнений Лапласа и Пуассона. Конечно-разностная аппроксимация. Метод Либмана.
- 5.5. Понятие об аппроксимации, сходимости и устойчивости разностных схем.Основная теорема о сходимости разностных схем.
- 5.6. Понятие о явных и неявных разностных схемах. Примеры.
- 5.7. Методы исследования устойчивости разностных схем.
- 5.8. Исследование устойчивости разностных схем для уравнения теплопроводности.
- 5.9. Исследование устойчивости разностных схем для волнового уравнения.
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.