rpd000001860 (1009027), страница 4

Файл №1009027 rpd000001860 (161700 (24.03.03).Б1 Гидроаэродинамика) 4 страницаrpd000001860 (1009027) страница 42017-06-17СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

в курсовой работе с использованием ПК.

Приложение 2
к рабочей программе дисциплины
«
Численные методы »

Cодержание учебных занятий

  1. Лекции

1.1.2. Прямые методы решения СЛАУ(АЗ: 2, СРС: 0)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Метод Гаусса, метод Гаусса с выбором главного элемента. LU – разложение матриц. Вычисление обратной матрицы с использованием метода Гаусса. Метод прогонки решения СЛАУ с трехдиагональной матрицей.



1.1.3. Итерационные методы решения СЛАУ(АЗ: 2, СРС: 0)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Метод простых итераций решения СЛАУ. Необходимое и достаточное условие сходимости. Погрешность решения. Метод Зейделя решения СЛАУ. Методы релаксации.



1.1.4. Методы решения задачи на собственные значения и собственные векторы матриц(АЗ: 2, СРС: 0)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Собственные значения и собственные векторы матриц, преобразования подобия. Оценка спектрального радиуса степенным методом. Метод вращения нахождения собственных значений и собственных векторов симметрических матриц. QR – разложение матриц. QR-алгоритм нахождения собственных значений матриц. Метод обратных итераций для нахождения собственных векторов.



1.2.1. Методы решения нелинейных уравнений(АЗ: 2, СРС: 0)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Нелинейные уравнения. Основные этапы нахождения корней. Метод половинного деления. Метод простых итераций решения нелинейных уравнений, погрешность, геометрический смысл. Достаточное условие сходимости. Метод Ньютона и метод секущих.



1.2.2. Методы решения систем нелинейных уравнений(АЗ: 2, СРС: 0)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Системы нелинейных уравнений. Графическая интерпретация Метод простых итераций и метод Зейделя, метод Ньютона и его модификации.



1.3.1. Методы приближения функций(АЗ: 4, СРС: 0)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Общая характеристика задач и методов приближения функций. Постановка задачи интерполяции, её единственность в случае полиномиальной интерполяции. Интерполяционные полиномы в форме Лагранжа и форме Ньютона. Погрешность. Тригонометрическая интерполяция. Недостатки глобальной интерполяции. Локальная интерполяция, ее достоинства. Сплайн-интерполяция. Кубические интерполяционные сплайны дефекта 1. Метод наименьших квадратов.





1.3.2. Методы численного дифференцирования и интегрирования(АЗ: 2, СРС: 0)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Численное дифференцирование. Основные формулы. Оценка погрешности.

Численное интегрирование. Формулы прямоугольников и трапеций. Погрешности.

Формула Симпсона. Погрешность. Процедура Рунге-Ромберга оценки погрешности численного интегрирования.





1.4.1. Численные методы решения задачи Коши для ОДУ(АЗ: 4, СРС: 0)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Постановка задачи Коши для ОДУ и систем ОДУ. Метод Эйлера. Модификации метода Эйлера решения задачи Коши для ОДУ и систем ОДУ. Семейство методов Рунге-Кутта. Метод Рунге-Кутта IV порядка.

Многошаговые методы. Семейство методов Адамса решения задачи Коши для ОДУ.

Понятие о жестких системах ОДУ. Неявные методы решения задачи Коши для ОДУ и систем ОДУ.





1.4.2. Численные методы решения краевых задач для ОДУ(АЗ: 4, СРС: 0)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Постановка краевых задач для ОДУ. Решение краевых задач для ОДУ методом стрельбы.

Решение краевых задач для ОДУ методом конечных разностей. Процедура Рунге-Ромберга оценки погрешности решения краевой задачи для ОДУ.





1.5.1. Основы метода конечных разностей(АЗ: 2, СРС: 2)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Постановка начально-краевых задач для уравнения теплопроводности и волнового уравнения. Постановка краевых задач для уравнений Лапласа и Пуассона.

Основные этапы решения уравнений в частных производных конечно-разностным методом. Основные конечно-разностные схемы.





1.5.2. Основные свойства конечно – разностных схем(АЗ: 4, СРС: 4)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Понятие об аппроксимации, сходимости и устойчивости разностных схем. Основная теорема о сходимости разностных схем. Методы исследования устойчивости разностных схем.





1.5.3. Методы решения интегральных уравнений(АЗ: 4, СРС: 3)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Численное решение интегральных уравнений Вольтерра и Фредгольма.



2.6.1. Метод конечных разностей в задачах параболического типа. Методы построения консервативных разностных схем(АЗ: 2, СРС: 0)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Постановка задач для уравнений параболического типа. Явные и неявные разностные схемы. Двухслойные схемы с весами. Анализ аппроксимации и устойчивости. Вопросы аппроксимации граничных условий.

Консервативность разностных схем. Задачи с переменными и разрывными коэффициентами. Интегро – интерполяционный метод построения дискретного аналога. Метод контрольного объема. Методы решения нелинейных задач.





2.6.3. Алгоритмы решения модельных задач. Методы решения многомерных задач(АЗ: 2, СРС: 0)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Нестационарное уравнение конвекции – диффузии с источниковым слагаемым. Особенности решения. Расщепление по физическим процессам. Нелинейные и квазилинейные уравнения. Уравнение Бюргерса.

Двух – и трехмерные задачи. Методы покоординатного расщепления. Метод переменных направлений и метод дробных шагов (локально-одномерный метод). Экономичность методов расщепления. Методы расщепления для уравнений, содержащих смешанные производные. Метод переменных направлений с экстраполяцией В.Ф. Формалева.



2.7.1. Метод конечных разностей в задачах гиперболического типа, диссипативные и дисперсионные свойства разностных схем(АЗ: 2, СРС: 0)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Постановка задач для уравнений гиперболического типа. Явные и неявные разностные схемы. Анализ аппроксимации и устойчивости. Условие Куранта-Фридрихса-Леви. Вопросы аппроксимации граничных условий.

Линейное уравнение переноса (адвекции). Противопоточная разностная схема. Схемная диссипация. Первое дифференциальное приближение разностной схемы. Схемы второго порядка по пространственной координате. Схемная дисперсия. Фазовые и амплитудные ошибки численного решения.





2.7.3. Метод контрольного объема в задачах гиперболического типа и основы численных методов решения систем гиперболических уравнений(АЗ: 2, СРС: 0)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Потоковая форма представления разностных схем. Проблема восстановления потоков на гранях контрольного объема. Задача о распаде произвольного разрыва. Схемы С.К. Годунова. Свойство монотонности разностных схем. TVD – монотонизация схем второго порядка.

Постановка задач для гиперболических систем. Характеристические свойства систем. Инварианты Римана. Сеточно – характеристические методы. Применение метода контрольного объема. Использование точного и приближенного решения задачи Римана. Схема Куранта-Изаксона-Риса. TVD – подход.







2.8.1. Метод конечных разностей в задачах эллиптического типа (АЗ: 2, СРС: 0)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Постановка задач для уравнений эллиптического типа. Уравнения Лапласа и Пуассона. Аппроксимация уравнений с помощью центральных разностей. Структура дискретного аналога. Собственные значения и собственные векторы матрицы. Спектральные методы решения дискретного аналога.







2.8.2. Итерационные методы решения сеточных уравнений. Многосеточные методы(АЗ: 4, СРС: 0)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Методы простых итераций и Гаусса-Зейделя. Релаксационные методы. Итерации с параметром. Чебышевское ускорение итераций. Попеременно - треугольный итерационный метод. Метод переменных направлений. Итерационные методы вариационного типа. Метод сопряженных градиентов. Метод бисопряженных градиентов для несимметричных матриц. Понятие о многосеточных методах.

Многосеточные методы.







2.9.1. Применение декартовых сеток для решения уравнений математической физики в сложных областях(АЗ: 2, СРС: 0)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Ступенчатая аппроксимация границы. Алгоритмы одномерной интерполяции. Метод скошенных ячеек. Метод фиктивных областей. Методы погруженной границы. Неявный метод погруженной границы с фиктивными ячейками.





2.9.2. Применение адаптивных сеток. Понятие о методе конечных элементов(АЗ: 2, СРС: 0)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Криволинейные ортогональные и неортогональные сетки. Адаптация к границам области и особенностям решения. Преобразования координат. Структурированные, неструктурированные и гибридные сетки. Подвижные сетки. Методы построения адаптивных сеток.

Принципы разбиения плоских областей на конечные элементы. Аппроксимация линейными многочленами и базисные функции. Методы взвешенных невязок. Весовые функции. Конечно - элементный метод Галеркина. Слабая формулировка конечно-элементного метода. Ансамблирование элементов и построение глобальной СЛАУ.







  1. Практические занятия

1.1.1. Нормы векторов и матриц. Обусловленность матриц. Прямые методы решения СЛАУ(АЗ: 2, СРС: 2)

Форма организации: Практическое занятие

Прикрепленные файлы: Practice2.doc



1.1.2. Итерационные методы решения СЛАУ (АЗ: 2, СРС: 2)

Форма организации: Практическое занятие

Прикрепленные файлы: Practice3.doc



1.1.3. Нахождение собственных значений и собственных векторов матриц(АЗ: 2, СРС: 4)

Форма организации: Практическое занятие

Прикрепленные файлы: Practice4.doc



1.2.4. Решение нелинейных уравнений(АЗ: 2, СРС: 2)

Форма организации: Практическое занятие

Прикрепленные файлы: Practice5.doc



1.2.5. Решение систем нелинейных уравнений (АЗ: 2, СРС: 1)

Форма организации: Практическое занятие

Прикрепленные файлы: Practice6.doc



1.3.6. Полиномиальная интерполяция(АЗ: 2, СРС: 2)

Форма организации: Практическое занятие

Прикрепленные файлы: Practice7.doc



1.3.7. Интерполяция сплайнами (АЗ: 2, СРС: 2)

Форма организации: Практическое занятие

Прикрепленные файлы: Practice8.doc



Характеристики

Тип файла
Документ
Размер
1,49 Mb
Тип материала
Высшее учебное заведение

Список файлов учебной работы

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6548
Авторов
на СтудИзбе
300
Средний доход
с одного платного файла
Обучение Подробнее