мои (1003149), страница 4

Файл №1003149 мои (Практика + Теория) 4 страницамои (1003149) страница 42016-06-22СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

Состояние равновесия жидкости, в отсутствие сил гравитационного притяжения и других внешних сил, имеет место при минимальной площади поверхности, соответствующей заданному объему жидкости. Этим объясняется то, что в невесомости капля жидкости принимает шарообразную форму. Мыльный пузырь имеет почти сферическую форму вследствие малости своего веса.

Рассмотрим теперь явления, происходящие с каплей жидкости, помещенной на поверхность твердого тела. В этом случае имеются три границы раздела между фазами: газ-жидкость, жидкость-твердое тело и газ-твердое тело. Поведение капли жидкости будет определяться значениями поверхностного натяжения (удельными величинами свободной поверхностной энергии) на указанных границах раздела. Сила поверхностного натяжения на границе раздела жидкости и газа будет стремиться придать капле сферическую форму. Это произойдет в том случае, если поверхностное натяжение на границе раздела жидкости и твердого тела будет больше поверхностного натяжения на границе раздела газа и твердого тела (см. рис. 7.2(а)). В этом случае процесс стягивания жидкой капли в сферу приводит к уменьшению площади поверхности границы раздела жидкость-твердое тело при одновременном увеличении площади поверхности границы раздела газ-жидкость. Тогда наблюдается несмачивание поверхности твердого тела жидкостью. Форма капли будет определяться равнодействующей сил поверхностного натяжения и силы тяжести. Если капля большая, то она будет растекаться по поверхности, а если маленькая - стремиться к шарообразной форме.

Рис. 7.2.
Различные формы капли на поверхности твердого тела для случаев несмачивающей (а) и смачивающей (б) жидкостей

Если поверхностное натяжение на границе раздела жидкости и твердого тела меньше поверхностного натяжения на границе раздела газа и твердого тела, то капля приобретет такую форму, чтобы уменьшить площадь поверхности границы раздела газ-твердое тело, то есть будет растекаться по поверхности тела (см. рис. 7.2(б)). В этом случае наблюдаетсясмачивание жидкостью твердого тела.

Для количественного описания смачивания жидкостью твердого тела рассмотрим равновесие сил, действующих на элемент контура, образованного пересечением трех границ раздела фаз: газа 1, жидкости 2 и твердого тела 3 (см. рис. 7.3).

Рис. 7.3.

.

Явление смачивания (или несмачивания) твердого тела жидкостью приводит к появлению капиллярного эффекта. Капилляром называется тонкая трубка, вставленная в сосуд с жидкостью. Капиллярный эффект связан с тем, что в зависимости от того, смачивает жидкость стенки капилляра или нет, внутри капилляра поверхность жидкости приобретает соответственно вогнутую или выпуклую форму. В первом случае давление внутри жидкости уменьшается по сравнению с внешним, и она поднимается внутри капилляра (см. рис. 7.4(а)). А во втором - это давление возрастает, что приводит к опусканию уровня жидкости в капилляре по отношению к её уровню в сосуде (см. рис. 7.4(б)).

Подъем жидкости в капилляре и дополнительное давление могут быть определены из условия минимума потенциальной энергии

,

(7.21)

где: - элементарное изменение высоты столба жидкости в капилляре.

Для повышения уровня жидкости в цилиндрическом капилляре на величину необходимо совершит работу против сил тяжести

(7.22)

и сил поверхностного натяжения

.

(7.23)

Здесь: - плотность жидкости, - ускорение свободного падения, - высота подъема жидкости в капилляре, - радиус капилляра, и - поверхностное натяжение на границе раздела газа и капилляра, и жидкости и капилляра соответственно. Тогда изменение энергии

(7.24)

или

.

(7.25)

Таким образом, условие (7.21) приобретает вид

.

(7.26)

Учет формулы (7.17) позволяет записать последнее выражение в форме

,

(7.27)

где: - поверхностное натяжение на границе раздела газа и жидкости. Отсюда следует, что высота подъема жидкости в капилляре определяется выражением

2. Эффект Джоуля-Томпсона. Принцип Ле-Шателье-Брауна.

Эффект Джоуля-Томпсона: (Дроссельэффект) заключается в изменении температуры газа при его адиабатическом (без теплообмена с окружающей средой) дросселировании, т.е. протекании через пористую перегородку, диафрагму или вентель. Эффект называется положительным, если температура газа при адиабатическом дросселировании понижается, и отрицательным, если она повышается. Для каждого реального газа существует точка инверсии - значение температуры при которой измеряется знак эффекта. Для воздуха и многих других газоз точка инверсии лежит выше комнатной температуры и они охлаждаются в процессе Джоуля-Томсона. Дросселирование - один из основных процессов, применяемых в технике снижения газов и получения сверхнизких температур. Способ определения термодинамических величин газов, например, энтальпии, путем термостатировакия исходного газа, дросселирования его с последующим измерением тепла, подзеденного Джо к газу, отличающийся тем. что с целью определения термодинамических величин газов с отрицательным эффектом Джоуля-Томсона. Газ после дросселирования охлаждают до первоначальной температуры, затем нагревают до температуры после дросселя с измерением подведенного к нему тепла и по известным соотношениям определяют искомые величины.

Принцип Ле-Шателье-Брауна: Внешнее воздействие, выводящее систему из термодинамического равновесия, вызывает в ней процессы, стремящиеся ослабить результаты этого воздействия. -Увеличение давления смешает равновесие в сторону реакции, зедушей к уменьшению объема. -Повышение температуры смешает равновесие в сторону эндотермической реакции. -Увеличение концентрации исходных вешеств и удаление продуктов из сферы реакции смешают равновесие в строну прямой реакции. - Катализаторы не влияют на положение равновесия.







































20

Пространство, в котором действуют консервативные силы, называется потенциальным полем. Каждой точке потенциального поля соответствует некоторое значение силы F, действующей на тело, и некоторое значение потенциальной энергии U. Значит, между силой F и U должна быть связь , с другой стороны, dA = –dU, следовательно Fdr=-dU, отсюда:

Проекции вектора силы на оси координат:

Вектор силы можно записать через проекции: , F = –grad U, где .

Градиент – это вектор, показывающий направление наибыстрейшего изменения функции. Следовательно, вектор направлен в сторону наибыстрейшего уменьшения U.

Потенциальная энергия упругой деформации (пружины)

Найдём работу, совершаемую при деформации упругой пружины.
Сила упругости Fупр = –kx, где k – коэффициент упругости. Сила непостоянна, поэтому элементарная работа dA = Fdx = –kxdx.
(Знак минус говорит о том, что работа совершена над пружиной). Тогда , т.е. A = U1 – U2. Примем: U2 = 0, U = U1, тогда .

На рис. 5.5 показана диаграмма потенциальной энергии пружины.

Рис. 5.5
Здесь E = K + U – полная механическая энергия системы, К – кинетическая энергия в точке x1.

Потенциальная энергия при гравитационном взаимодействии

Работа тела при падении A = mgh, или A = U – U0.
Условились считать, что на поверхности Земли h = 0, U0 = 0. Тогда A = U, т.е. A = mgh.

Для случая гравитационного взаимодействия между массами M и m, находящимися на расстоянии r друг от друга, потенциальную энергию можно найти по формуле .

На рис. 5.4 изображена диаграмма потенциальной энергии гравитационного притяжения масс M и m.

Характеристики

Тип файла
Документ
Размер
12,75 Mb
Предмет
Высшее учебное заведение

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6547
Авторов
на СтудИзбе
300
Средний доход
с одного платного файла
Обучение Подробнее