мои (1003149), страница 5
Текст из файла (страница 5)
Рис. 5.4
Здесь полная энергия E = K + E. Отсюда легко найти кинетическую энергию: K = E – U.
Первая и вторая теоремы Карно[править | править вики-текст]
Основная статья: Теорема Карно (термодинамика)
Из последнего выражения следует, что КПД тепловой машины, работающей по циклу Карно, зависит только от температур нагревателя и холодильника, но не зависит ни от устройства машины, ни от вида или свойств её рабочего тела. Этот результат составляет содержание первой теоремы Карно[8]. Кроме того, из него следует, что КПД может составлять 100 % только в том случае, если температура холодильника равна абсолютному нулю. Это невозможно, но не из-за недостижимости абсолютного нуля (этот вопрос решается только третьим началом термодинамики, учитывать которое здесь нет необходимости), а из-за того, что такой цикл или нельзя замкнуть, или он вырождается в совокупность двух совпадающих адиабат и изотерм.
Поэтому максимальный КПД любой тепловой машины не может превосходить КПД тепловой машины Карно, работающей при тех же температурах нагревателя и холодильника. Это утверждение называется второй теоремой Карно[5][9]. Оно даёт верхний предел КПД любой тепловой машины и позволяет оценить отклонение реального КПД от максимального, то есть потери энергии вследствие неидеальности тепловых процессов.
Связь между обратимостью цикла и КПД
Описание цикла Карно[править | править вики-текст]
Рис. 1. Цикл Карно в координатах T—S
Пусть тепловая машина состоит из нагревателя с температурой {\displaystyle T_{H}}, холодильника с температурой {\displaystyle T_{X}} и рабочего тела.
Цикл Карно состоит из четырёх обратимых стадий, две из которых осуществляются при постоянной температуре (изотермически), а две — при постоянной энтропии (адиабатически). Поэтому цикл Карно удобно представить в координатах T (температура) и S (энтропия).
1. Изотермическое расширение (на рис. 1 — процесс A→Б). В начале процесса рабочее тело имеет температуру {\displaystyle T_{H}}, то есть температуру нагревателя. Затем тело приводится в контакт с нагревателем, который изотермически (при постоянной температуре) передаёт ему количество теплоты {\displaystyle Q_{H}}. При этом объём рабочего тела увеличивается, оно совершает механическую работу, а его энтропия возрастает.
2. Адиабатическое расширение (на рис. 1 — процесс Б→В). Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом температура тела уменьшается до температуры холодильника {\displaystyle T_{X}}, тело совершает механическую работу, а энтропия остаётся постоянной.
3. Изотермическое сжатие (на рис. 1 — процесс В→Г). Рабочее тело, имеющее температуру {\displaystyle T_{X}}, приводится в контакт с холодильником и начинает изотермически сжиматься под действием внешней силы, отдавая холодильнику количество теплоты {\displaystyle Q_{X}}. Над телом совершается работа, его энтропия уменьшается.
4. Адиабатическое сжатие (на рис. 1 — процесс Г→А). Рабочее тело отсоединяется от холодильника и сжимается под действием внешней силы без теплообмена с окружающей средой. При этом его температура увеличивается до температуры нагревателя, над телом совершается работа, его энтропия остаётся постоянной.
№21
В физике консервати́вные си́лы (потенциальные силы) — это силы, работа которых не зависит от вида траектории, точки приложения этих сил и закона их движения, и определяется только начальным и конечным положением этой точки[1]. Равносильным определением является и следующее: консервативные силы — это такие силы, работа которых по любой замкнутой траектории равна 0.
В физике консервати́вные си́лы (потенциальные силы) — это силы, работа которых не зависит от вида траектории, точки приложения этих сил и закона их движения, и определяется только начальным и конечным положением этой точки[1]. Равносильным определением является и следующее: консервативные силы — это такие силы, работа которых по любой замкнутой траектории равна 0.
Определение: Работа консервативных сил по замкнутому контуру равна нулю.
Легко увидеть, что это эквивалентное определение, рассмотрев работу по произвольной замкнутой траектории 1-3-2-4-1. В самом деле, для консервативной силы имеем
С другой стороны работа меняет знак при изменении направления обхода, т.е. . Тогда и получаем
.
Молекулы газа не все время движутся свободно, а сталкиваются с другими молекулами, в результате чего изменяют направление движения. Столкновения могут приводить и к другим последствиям, например, ионизация, реакция, возбуждение и девозбуждение и т.д.
Для описания вероятности столкновения с определенным результатом вводится эффективное сечение s.
Будем считать падающую частицу точечной, а частицу мишени имеющей такие размеры, что максимальная площадь, перпендикулярная направлению падающей частицы, равной s. Это воображаемая площадь, а не геометрическая. Она подбирается такой, чтобы вероятность рассматриваемого результата столкновения была равна вероятности того, что падающая частица, двигаясь прямолинейно без взаимодействия с другими частицами, попадет в площадку s.
Ранее в курсе механики мы вводили понятие эффективного дифференциального сечения
(1.1)
как отношения числа частиц , рассеянных в углы от
до
, к плотности потока
падающих частиц (интенсивности пучка). Так, для дифференциального сечения рассеяния на твердом шаре получали:
, (1.2)
а полное сечение рассеяния (выбывания частицы из начального пучка) равнялось:
, (1.3)
где радиус твердого шара.
В нашем случае молекулы газа также имеют размеры, которые можно
задать введением некоторого параметра. Введем понятие эффективного
диаметра молекулы по аналогии с радиусом эффективного твердого шара
, на котором рассеивается молекула, рассматриваемая как
материальная точка.
№22
№23
Распределение Больцмана — распределение вероятностей различных энергетических состояний идеальной термодинамической системы (идеальный газ атомов или молекул) в условиях термодинамического равновесия; открыто Л. Больцманом в 1868—1871.
Согласно распределению Больцмана среднее число частиц с полной энергией равно
где — кратность состояния частицы с энергией
— число возможных состояний частицы с энергией
. Постоянная
находится из условия, что сумма
по всем возможным значениям
равна заданному полному числу частиц
в системе (условие нормировки):
В случае, когда движение частиц подчиняется классической механике, энергию можно считать состоящей из
-
кинетической энергии
(кин) частицы (молекулы или атома),
-
внутренней энергии
(вн) (например, энергии возбуждения электронов) и
-
потенциальной энергии
(пот) во внешнем поле, зависящей от положения частицы в пространстве:
-
Найти вероятную скорость, среднюю кинетическую энергию поступательного движения и среднюю полную кинетическую энергию молекул кислорода при температуре t=30⁰C
4.
Из основного закона динамики тела, вращающегося вокруг неподвижной оси z (уравнение 4.13), следует закон сохранения момента импульса тела относительно оси:
если момент внешних сил относительно неподвижной оси вращения тела тождественно равен нулю, то момент импульса тела относительно этой оси не изменяется в процессе движения, т.е. если Mz = 0, то dLz / dt = 0, откуда
№24
Моме́нт и́мпульса (кинетический момент, угловой момент, орбитальный момент, момент количества движения) характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение[1
Замечание: момент импульса относительно точки — это псевдовектор, а момент импульса относительно оси — псевдоскаляр.
Момент импульса {\displaystyle \mathbf {L} } материальной точки относительно некоторого начала отсчёта определяется векторным произведением её радиус-вектора и импульса:
L= r x p
Так как момент импульса определяется векторным произведением, он является псевдовектором, перпендикулярным обоим векторам {\displaystyle ~\mathbf {r} } и {\displaystyle ~\mathbf {p} }. Однако, в случаях вращения вокруг неизменной оси, бывает удобно рассматривать не момент импульса как псевдовектор, а его проекцию на ось вращения как скаляр, знак которого зависит от направления вращения.
L= r *p*sina
5.5. Экспериментальная проверка распределения Максвелла
Первым экспериментальным подтверждением существования распределения молекул по скоростям можно считать результаты опыта Штерна, описанного в параграфе 2.3. Но точность этого опыта была недостаточной для установления конкретного вида распределения.
Прямые измерения скорости атомов ртути в пучке были выполнены в 1929 году Ламмертом. Упрощенная схема этого эксперимента показана на рис. 5.6.
Два диска 1, насаженные на общую ось, имели радиальные прорези 2, сдвинутые друг относительно друга на угол . Напротив щелей находилась печь 3, в которой нагревался до высокой температуры легкоплавкий металл. Разогретые атомы металла, в данном случае ртути, вылетали из печи и с помощью коллиматора 4 направлялись в необходимом направлении. Наличие двух щелей в коллиматоре обеспечивало движение частиц между дисками по прямолинейной траектории 5, параллельной их оси. В установке Ламмерта в дисках было сделано множество щелей (они на рисунке не изображены) с целью увеличения интенсивности прошедшего пучка. Далее атомы, прошедшие прорези в дисках, регистрировались с помощью детектора 6. Вся описанная установка помещалась в глубокий вакуум.