Популярные услуги

Главная » Лекции » Строительство » Вяжущие вещества » Гидравлические вяжущие вещества

Гидравлические вяжущие вещества

2021-03-09СтудИзба

5.4. Гидравлические вяжущие вещества

Гидравлические свойства этой группы вяжущих обусловлены наличием в их составе силикатов, алюминатов, ферритов кальция. Чем больше в вяжущем таких соединений и чем они более основны, тем сильнее выражены гидравлические свойства и выше прочность вяжущего.

Химический состав сырья и гидравлические свойства  готового вяжущего характеризуют гидравлическим или основным модулем:

Для воздушной извести этот модуль больше 9, для гидравлической—1,7...9, а для романцемента — 1,1...1,7. Однако если температуру обжига сырьевой смеси с т0≈2 довести до 1450 °С, то образуются более высокоосновные силикаты кальция и другие соединения, обладающие большой прочностью и гидравличностью. В результате получают новое вяжущее — портландцемент, обладающий высокой прочностью.

5.4.1. Гидравлическая известь. Гидравлическую известь получают из мергелистых известняков содержащих 6...20 % равномерно распределенной глины. При обжиге сначала происходит разложение карбоната кальция на СаО и СО2, а глинистых минералов — на аморфные SiO2 и А12О3. При температуре 1000…1100 0С часть оксида кальция взаимодействует в твердом состоянии с SiO2, А12О3, Fe2O3, образуя низкоосновные силикаты, алюминаты и ферриты кальция (2CaOхSiO2, 2СаОхА1203, СаОхFe203).

Следовательно, гидравлическая известь состоит из различных соединений, часть которых (CaO+MgO) обусловливает свойства извести как воздушного вяжущего, и часть (силикаты, алюминаты, ферриты кальция) — гидравлического. Чем больше в составе гидравлической извести последних соединений, тем быстрее она твердеет и выше ее прочность.

Гидравлическая известь способна диспергироваться частично при гашении водой, но чаще ее превращают в рабочее состояние помолом. Для твердения гидравлической извести вначале необходимы, как и для воздушной извести, воздушно-сухие условия, а затем — влажные, чтобы обеспечить гидратацию силикатов, алюминатов и ферритов кальция. Чем больше в извести свободного оксида кальция, тем более продолжительным должно быть начальное твердение в воз душной среде (обычно 7...15 сут).

Различают слабогидравлическую (гидравлический модуль 4,5... ...9,0) и сильногидравлическую (модуль 1,7...4,5) известь. Прочность при сжатии растворов должна быть не менее 1,7 МПа — для слабо гидравлической извести и не менее 5 МПа — для сильногидравлической.

Рекомендуемые материалы

5.4.2. Романцемент. Романцемент является особой разновидностью сильногидравлической извести с модулем основности меньше 1,7. Романцемент получают обжигом при 1000...1100 °С мергелей, в которых глинистых примесей больше 25 %, с последующим помолом в тонкий порошок. Романцемент почти целиком состоит из низкоосновных силикатов, алюминатов и ферритов кальция и не способен гаситься. Марки романцемента 25, 50 и 100 (2,5...10 МПа).

Гидравлическую известь и романцемент применяют для изготовления штукатурных и кладочных растворов, в том числе во влажных условиях, бетонах низких марок, смешанных вяжущих и т. п., что позволяет экономить энергоемкий и дорогой портландцемент.

5.4.3. Портландцемент. Портландцемент и его разновидности являются основным вяжущим материалом в современном строительстве.

Портландцемент продукт тонкого измельчения клинкера, получаемого обжигом до спекания, т. е. частичного плавления сырьевой смеси, обеспечивающей преобладание в нем высокоосновных силикатов кальция (70...80 %). Для регулирования схватывания и некоторых других свойств при помоле клинкера в цемент добавляют небольшое количество гипса (1,5...3,5 %).

Сырье и производство. Для получения доброкачественного портландцемента химический состав клинкера, а следовательно, и состав сырьевой смеси должны быть устойчивы. Многочисленные исследования и практический опыт показывают, что элементарный химический состав клинкера должен находиться в следующих пределах (% по массе): CaO —63...66; SiO2 —21...24; А12О3 — 4...8; Fе2О3 — 2...4, их суммарное количество составляет 95... ...97 %. Следовательно, для производства портландцемента следует применять такие сырьевые материалы, которые содержат много карбоната кальция и алюмосиликатов (известняки, глины, известковые мергели). Чаще используют искусственные сырьевые смеси из известняка или мела и глинистых пород при соотношении между ни ми в сырьевой шихте примерно 3:1 (% по массе): СаСО3 — 75...78 и глинистого вещества — 22…25.

Вместо глины или для частичной ее замены используют также отходы различных производств (доменные шлаки, нефелиновый шлам и т. п.). Нефелиновый шлам, получающийся при производстве глинозема, уже содержит 25...30 % SiO2 и 50...55 % СаО; достаточно к нему добавить 15...20 % известняка, что бы получить сырьевую смесь. При этом производительность печей повысится примерно на 20 %, а расход топлива снизится на 20...25 %.

Для обеспечения нужного химического состава сырьевой смеси применяют корректирующие добавки, содержащие недостающие оксиды. Например, количество SiО2 повышают, добавляя в сырьевую смесь трепел, опоку. Добавление колчеданных огарков увеличивает содержание Fe203.

В качестве топлива используют природный газ, реже мазут и твердое топливо в виде угольной пыли. Стоимость топлива составляет до 50 - 60 % себестоимости готового цемента, поэтому на цементных заводах много внимания уделяется его экономии.

Технология портландцемента в основном сводится к приготовлению сырьевой смеси надлежащего состава, ее обжигу до спекания (получают клинкер) и помолу в тонкий порошок.

Сырьевую смесь приготовляют сухим или мокрым способом. В соответствии с этим различают и способы производства цемента — сухой и мокрый. В странах СНГ преобладает мокрый способ производства цемента, но все шире внедряется сухой. Важнейшим преимуществом сухого способа производства является не только снижение расхода теплоты на обжиг в 1,5...2 раза, чем при мокром, но и более высокие удельные съемы готового продукта в печах сухого способа.

Обжиг сырьевой смеси чаще осуществляют во вращающихся печах, но иногда (при сухом способе) и в шахтных.

Вращающаяся печь представляет собой сварной стальной барабан длиной до 185 м и более, диаметром до 5...7 м, футерованный изнутри огнеупорными материалами. Барабан уложен на роликах под углом 3...40 к горизонту и медленно вращается вокруг своей оси. Благодаря этому сырьевая смесь, загруженная в верхнюю часть печи, постепенно перемещается к нижнему концу, куда вдувают топливо, продукты горения которого просасываются навстречу сырьевой смеси и обжигают ее. Характер процессов, протекающих при обжиге сырьевой смеси, приготовленной по сухому и мокрому способам, по существу, одинаков и определяется температурой и временем нагревания материала в печи. Рассмотрим эти процессы.

В зоне сушки поступающая в верхний конец печи сырьевая смесь встречается с горячими газами и посте пенно при повышении температуры с 70 до 200 °С (зона сушки) подсушивается, превращаясь в комья, которые при перекатывании распадаются на более мелкие гранулы. По мере перемещения сырьевой смеси вдоль печи происходит дальнейшее постепенное ее нагревание, сопровождаемое химическими реакциями.

В зоне подогрева при 200...700 °С сгорают находящиеся в сырье органические примеси, удаляется химически связанная вода из глинистых минералов образуется безводный каолинит А1203хSiO2. Подготовительные зоны (сушки и подогрева) при мокром способе производства занимают 50...60 % длины печи, при сухом же способе подготовки сырья длина печи сокращается за счет зоны сушки.

В зоне декарбонизации при температуре 700…1000 оС проходит процесс диссоциации карбонатов кальция и магния на CaO,  MgO и СО2, алюминаты глины распадаются на отдельные оксиды 2SiO2, А12О3; Fе2Ос сильно разрыхленной структурой. Термическая диссоциация СаСО3 - это эндотермический процесс происходящий с большим поглощением теплоты (1780 кДж на кг СаСО3), поэтому потребление  теплоты в третьей зоне наибольшее. В этой же зоне оксид кальция в твердом состоянии вступает в реакцию с продуктами распада глинистых минералов с образованием низкоосновных силикатов, алюминатов и ферритов кальция (2CaOхSiO2, CaOхAl2O3, 2CaOхFe2O3 ).

В зоне экзотермических реакций обжигаемая масса, передвигаясь, быстро нагревается от 1100 до 1300оС, при этом образуются более основные соединения: трехкальциевый алюминат 3·СаОхAl2O3 (C3A), четырехкальцевый алюмоферрит  4·CaOх·Al2O3хFe2O3 (C4AF), но часть оксида кальция остается в свободном виде. Обжигаемый материал агрегируется в гранулы.

В зоне спекания при 1300…1450 оС обжигаемая смесь частично расплавляется. В расплав переходят С3А, C4AF, MgO им все легкоплавкие примеси сырьевой смеси. По мере плавления расплава в нем растворяются C2S и CaO и, вступая в реакцию друг с другом, образуют основной минерал клинкера – трехкальциевый силикат 3CaOхSiO2 (C3S), который плохо растворяется в расплаве и вследствие этого выделяется из расплава в виде мелких кристаллов, а обжигаемый материал спекается в кусочки размерам 4…25 мм, называемый клинкером.

В зоне охлаждения (заключительная стадия обжига)  температура  клинкера понижается с 1300 до 1000оС, происходит окончательная фиксация его структуры и состава, включающего С3S, C2S, C3A, C4AF, стекловидную фазу и второстепенные составляющие.

По выходе из печи клинкер необходимо быстро охладить в специальных холодильниках, чтобы предотвратить образование в нем крупных кристаллов и сохранить в не закристаллизованном виде стекловидную фазу. Без быстрого охлаждения клинкера получится цемент с пониженной реакционной способностью по отношению к воде. После выдержки на складе (1...2 недели) клинкер превращают в цемент путем помола его в тонкий порошок, добавляя небольшое количество двуводного гипса. Готовый портландцемент направляют для хранения в силосы и далее на строительные объекты.

Сухой способ производства цемента значительно усовершенствован. Наиболее энергоемкий процесс — декарбонизация сырья — вынесен из вращающейся печи в специальное устройство — декарбонизатор, в котором он протекает быстрее и с использованием теплоты отходящих газов По этой технологии сырьевая мука сначала поступает не в печь, а в систему циклонных теплообменников, где нагревается отходящими газами и уже горячей подается в декарбонизатор. В декарбонизаторе сжигают примерно 50 % топлива, что позволяет почти полностью завершить разложение СаСО3. Подготовленная таким образом сырьевая мука подается в печь, где сжигается остальная часть топлива и происходит образование клинкера. Это позволяет повысить производительность технологических линий, снизить топливно-энергетические ресурсы, примерно вдвое сократить длину вращающейся печи, соответственно улучшить компоновку завода и занимаемой им земельной территории.

В России создана низкотемпературная солевая технология производства цемента, базирующаяся на открытии отечественных ученых. Сущность открытия заключается в установлении нового явления — образования высокоосновного силиката кальция — алинита, близкого по составу к алиту в области температур 900...1100 °С, т. е. значительно ниже температур кристаллизации трехкальциевых силикатов — алитов. Алинит, являющийся основной вяжущей фазой портландцементных клинкеров нового типа, обусловливает их высокую гидравлическую активность. Вхождение анионов хлора в структуру является обязательным условием образования алинита и клинкеров нового типа. Введение в шихту, например, 10...12 % СаС12 сопровождается образованием хлоркальциевого расплава при чрезвычайно низких температурах (600...800 °С), что смещает все основные реакции образования минералов в область температур 1000...1100 °С и позволяет получать клинкер при пониженных температурах. Внедрение этой новой технологии позволит сократить удельные расходы топлива, резко повысить производительность печей и помольного оборудования.

Состав

Портландцементный клинкер сострит из ряда искусственных минералов, образовавшихся при обжиге. Ориентировочное содержание основных четырех минералов в портландцементном клинкере составляет (%  по массе): алит   3·CaOхSiO2(C3S) — 40...65,   белит 2·CaOхSiO2(C2S) — 15...40, 3·СаОхА12О33А) — 5...15, 4·CaOхAl2ОхFe2О3 (C4AF) — 10...20.

Исследования цементного клинкера под микроскопом показывают, что в нем преобладают кристаллы элита и белита, между которыми размещается промежуточное вещество, состоящее из алюминатов и алюмоферритов кальция в кристаллической форме, а также незакристаллизованного стекла и оставшихся в свободном состоянии СаО и MgO.

Трехкальциевый силикат (алит) — главный минерал цементного клинкера — обладает большой активностью в реакции с водой, особенно в начальные сроки (величина тепловыделения к 3 суткам достигает примерно 2/3 от тепловыделения при полной гидратации). Алит быстро твердеет и набирает высокую прочность.

Двухкальциевый силикат (белит) значительно менее активен, чем алит. Тепловыделение белита при полной гидратации примерно в 2 раза меньше, чем у алита, и к 3 суткам составляет около 10 % от тепловыделения при полной гидратации. Твердение белита происходит медленно. К месячному сроку продукт его твердения обладает сравнительно невысокой прочностью, но при длительном твердении (несколько лет) в благоприятных условиях (при положительной температуре и влажной среде) его прочность неуклонно возрастает.

Трехкальциевый алюминат — самый активный клинкерный минерал, отличающийся быстрым взаимодействием с водой. Его тепловыделение при полной гидратации почти в 2 раза больше, чем у алита, а за 3 суток составляет не менее 80 % от общего тепловыделения. Однако продукт его твердения имеет повышенную пористость, низкие прочность и долговечность. Быстрое твердение С3А вызывает раннее структурообразование в цементном тесте и сильно ускоряет сроки схватывания (всего до нескольких минут), если не ввести добавку двуводного гипса, то получается цемент «быстряк», бетонные смеси на котором из-за преждевременного схватывания не успевают хорошо перемешать и уложить в форму.

Четырехкальциевый алюмоферрит характеризуется умеренным тепловыделением и по быстроте твердения занимает промежуточное положение между трехкальциевым и двухкальциевым силикатами. Прочность продуктов его гидратации в ранние сроки ниже, чем у алита, и несколько выше, чем у белита. Располагая данными о минеральном составе клинкера и зная свойства клинкерных минералов, можно заранее предопределить основные свойства цемента и особенности его твердения в различных условиях эксплуатации. Нежелательными составными частями клинкера являются свободные оксиды кальция и магния. Их вредное влияние проявляется в том, что они гидратируются очень медленно в уже затвердевшем цементе. Содержание свободных СаО и MgO в клинкере допускается соответственно не более 1 и 5 %.

В клинкере могут быть также щелочные оксиды Na2O и К2О, перешедшие в него из сырьевых материалов и золы твердого топлива. Их вредное влияние может проявиться в тех случаях, когда бетон изготовлен на заполнителях, содержащих опаловидный кремнезем. Щелочи, реагируя с диоксидом кремния, образуют в водной среде водорастворимые силикаты калия и натрия с увеличением объема, что вызывает растрескивание бетона. Содержание Na2O и К2О в цементах для таких бетонов ограничивается до 0,6 %.  

Твердение. Упрощенно процесс твердения цемента можно описать так. Превращение цементного теста в камневидное тело обусловлено сложными химическими и физико-химическими процессами взаимодействия клинкерных минералов с водой, в результате которых образуются новые гидратные соединения, практически нерастворимые в воде.

Процесс гидролиза и гидратации трехкальциевого силиката выражается уравнением:

2 (3·СаО·SiO2) + 6Н2О = 3·CaO·2SiO2·3H2O + 3Са(ОН)2

В результате образуется практически нерастворимый в воде гидросиликат кальция и гидроксид кальция, который частично растворим в воде.

Двухкальциевый силикат гидратируется медленнее C3S и при его взаимодействии с водой выделяется меньше Са(ОН)2, что видно из уравнения реакции:

2 (2·СаО·SiO2) + 4·Н20 = 3·СаО ·2SiO2 ·3·Н2О + Ca(OH)2

Молярное соотношение СаО: SiO2 в гидросиликатах, образующихся в цементном тесте, может изменяться в зависимости от состава материала, условий твердения и других обстоятельств. Поэтому применяется термин C-S-H для всех полукристаллических и аморфных гидратов кальциевых силикатов. Гидросиликаты кальция низкой основности, имеющие состав (0,8...1,5)CaO·SiО2·(1...2,5)Н2О, обозначаются (по Тейлору) формулой C-S-H(I), гидросиликаты высокой основности (l,5...2) CaO·SiО2-n H2O — формулой C-S-H(II). Образование низкоосновных гидросиликатов кальция повышает прочность цементного камня; при возникновении высокоосновных гидросиликатов его прочность меньше. При определенных условиях, например при автоклавной обработке, образуется тоберморит 5CaO·6SiO·5H2O, характеризующийся хорошо оформленными кристаллами, которые упрочняют цементный камень.

Взаимодействие трехкальциевого алюмината с водой приводит к образованию гидроалюмината кальция:

3·CaO·Al2О3 + 6Н2О = 3·СаО·А12О3·6Н2О

Реакция протекает с большой скоростью. Образую щийся шестиводный трехкальциевый алюминат создает непрочную рыхлую кристаллизационную структуру и вызывает быстрое снижение пластических свойств цементного теста.

Замедления сроков схватывания портландцемента достигают введением при помоле небольшой добавки двуводного гипса. В результате химического взаимодействия трехкальциевого гидроалюмината с введенным гипсом и водой   образуется   труднорастворимый  гидросульфоалюминат кальция  (эттрингит)  по схеме:

3СаО· А12О3· 6Н2О + 3 (CaSO4 ·2Н2О) + (19...20)·Н2О = 3CaO· Al2O3 ·3CaSO(31...32) ·H2O

В насыщенном растворе Са(ОН)2 эттрингит сначала выделяется в коллоидном тонкодисперсном состоянии, осаждаясь на поверхности частиц 3·СаО·А12О3, замедляет их гидратацию и продлевает схватывание цемента.

Таким образом, на некоторое время, пока не израсходуется весь находящийся в растворе гипс (обычно 1...2 часа), предотвращается появление свободного гидроалюмината кальция и преждевременное загустевание цементного теста.

При правильной дозировке гипса он является не только регулятором сроков схватывания портландцемента, но и улучшает свойства цементного камня. Это связано с тем, что кристаллизация Са(ОН)2 из пересыщенного раствора понижает концентрацию гидроксида кальция в растворе и эттрингит уже образуется в виде длинных иглоподобных кристаллов. Кристаллы эттрингита и обусловливают раннюю прочность затвердевшего цемента. Кроме того, объем гидросульфоалюмината кальция более чем в 2 раза превышает объем исходных продуктов реакции. Так как такое увеличение объема происходит в еще незатвердевшем цементном тесте, то оно уплотняется, что способствует повышению прочности и морозостойкости цементного камня.

Четырехкальциевый алюмоферрит при действии воды гидролитически расщепляется с образованием шестиводного трехкальциевого алюмината и гидроферрита каль ция по схеме:

4СаО· A12O3· Fe2O3 + m Н2О = 3СаО · А12О3· 6Н2О + CaO· Fe2O3· n H2O

Однокальциевый гидроферрит, взаимодействуя с гидроксидом кальция, который образовался при гидролизе C3S, переходит в более основный гидроферрит кальция 3(4)CaO·Fe2O3·nH2O. Гидроалюминат связывается добавкой гипса, как указано выше, а гидроферрит входит в состав цементного геля.

При твердении цемента на воздухе рассмотренные выше реакции дополняются карбонизацией гидроксида кальция, протекающей на поверхности цементного камня,

Описанные химические превращения протекают параллельно с физико-химическими процессами микроструктурообразования, выражающимися в процессах молекулярного и коллоидации и кристаллизации. В своей совокупности эти процессы приводят к превращению цемента при затворении водой сначала в пластичное тесто, а затем в прочный затвердевший камень. Ввиду сложности и недостаточной изученности указанных физико-химических процессов существует различное теоретическое толкование об их характере и последовательности.

Как уже отмечалось, полнее других сущность твердения портландцемента и других неорганических вяжущих веществ была раскрыта в теории твердения этих вяжущих, выдвинутой А. А. Байковым и развитой затем другими советскими учеными — В. А. Киндом, В. Н. Юнгом, В. Ф. Журавлевым, П. П. Будниковым, П. А. Ребиндером, Н. А. Тороповым, А. Е. Шейкиным, А. В. Волженским и др.

В соответствии с этой теорией можно выделить три периода.

В первом периоде происходит растворение клинкерных минералов с поверхности цементных зерен до образования насыщенного раствора, в котором начинают возникать первичные зародыши новых фаз ( Са(ОН)2, эттрингита и иглы геля C-S-H).

 Во втором периоде в насыщенном растворе идут реакции гидратации клинкерных минералов в твердом со стоянии (топохимически), т. е. происходит прямое присоединение воды к твердой фазе вяжущего без предварительного его растворения. Образующиеся гидросиликат и гидроферрит кальция почти нерастворимы в воде и выделяются в коллоидном состоянии на поверхности цементных частиц. Гидроксид кальция и трехкальциевый гидроалюминат, обладая небольшой растворимостью, быстро образуют насыщенный, а в дальнейшем и пересыщенный раствор. Поэтому при продолжающейся химической реакции новые порции гидроксида кальция и трехкальциевого гидроалюмината также выделяются в коллоидном состоянии. В результате вокруг поверхности цементных зерен образуется оболочка коллоидного геля (студня), обладающего клеящим свойством. Через некоторое время цементные зерна оказываются в контакте друг с другом через такие оболочки, образуя так называемую коагуляционную структуру цементного теста. При этом цементное тесто начинает густеть и теряет пластичность — оно схватывается.

Характерной особенностью коагуляционной структуры цементного теста является ее тиксотропность, т. е. способность обратимо разрушаться (разжижаться) при механических воздействиях (перемешивание, встряхивание и т. д.).

В третьем периоде происходит переход некоторой части новообразований в кристаллическое состояние с последующим ростом отдельных кристалликов и образованием кристаллических сростков (формируется кристаллизационная структурная сетка). Быстрее других кристаллизуются трехкальциевый гидроалюминат и гидроксид кальция. Их микрокристаллы пронизывают гель и, срастаясь между собой, повышают прочность цементного камня. Одновременно гель, состоящий теперь главным образом из гидросиликата и гидроферрита кальция, уплотняется в результате отсоса воды внутрь цементных зерен на дальнейшую гидратацию, а при твердении цемента на воздухе — и за счет ее испарения. Частицы геля гидросиликата, имеющие первоначально игольчатую форму, продолжая расти, ветвятся, становятся древовидными, что является одной из причин соединения частиц геля гидросиликата в агрегаты, имеющие характерную форму «снопов пшеницы» или в виде плотно агломерированных листков. Тонкие слои геля получаются и между кристаллами Са(ОН)2, образуя с ними сросток, упрочняющий цементное тесто. Эти процессы идут медленно и обусловливают длительный рост прочности цементного камня.

Структура цементного камня

Образовавшийся цементный камень представляет собой микроскопически неоднородную дисперсную систему, образно названную В. Н. Юнгом «микробетоном». Заполняющая часть в нем представлена цементными зернами, еще не вступившими в реакции, а вяжущая — гелеобразными и кристаллическими новоообразованиями. От соотношения гелеобразных и кристаллических фаз в цементном камне, обладающих различными физико-химическими свойствами, их дисперсности зависят основные свойства цементного камня: деформативность, стойкость при попеременном замораживании и оттаивании, увлажнении и высушивании и др. Поэтому путем рационального подбора минерального состава клинкера и условий твердения можно получить структуру цементного камня, удовлетворяющую конкретным эксплуатационным условиям.

Существенным элементом структуры цементного камня являются поры: поры геля (менее 0,1 мкм); капиллярные поры (от 0,1 до 10 мкм), расположенные между агрегатами частиц геля; воздушные поры (от 50 мкм до 2 мм), образованные вовлеченным воздухом вследствие контракции, либо при добавлении специальных воздухо-вовлекающих веществ, повышающих морозостойкость.

Контракция (стяжение) — это явление уменьшения абсолютного объема системы (цемент / вода) в процессе гидратации.

В формировании пор цементного камня активным элементом является вода и ее связь с твердой фазой. П. А. Ребиндер выделяет три формы связи воды в цементном камне по принципу интенсивности энергии связи: Химическая связь является наиболее сильной; физико-химическая связь характерна для адсорбционно связан ной воды, находящейся в порах цементного геля; физико-механическая связь — в данном случае капиллярное давление— обусловливает удержание воды в капиллярных порах цементного камня. Адсорбционно связанная и капиллярная вода, удаляемая при высушивании, называется еще испаряемой, а химически связанная, удаляемая при прокаливании, — неиспаряемой.

Количество воды, необходимое для полной гидратации цемента, составляет 24...26 % от массы портландцемента, а по условиям получения пластичного цементного теста требуется воды значительно больше (40...60 %). Испаряемая вода на разных этапах твердения постепенно уходит из цементного камня. Поэтому часть объема цементного камня (иногда до 25...35%) приходится на поры и капилляры, оставленные водой, что отрицательно сказывается на прочности и морозостойкости камня.

При увеличении степени гидратации цемента возрастает объем новообразований и уменьшается пористость цементного камня, при этом повышается прочность и долговечность бетона. Совершенствуя технологию бетона, нужно добиваться наиболее полного использования вяжущего, что эквивалентно его экономии.

Скорость химических реакций, протекающих при твердении цемента, а также полнота использования цемента и его прочность увеличиваются при повышении тонкости помола цемента.

Для непрерывного повышения прочности цементного камня необходима влажная теплая среда. Твердение практически прекращается, если цементный камень будет находиться в сухой среде или при отрицательной температуре. Замерзший камень после оттаивания спо­собен к дальнейшему твердению, но в этом случае не всегда может быть достигнута такая же прочность, как при твердении в нормальных условиях.

Производственные требования часто вызывают необходимость регулировать процесс формирования структуры цементного камня и бетона, ускорять или замедлять его.

Помимо выбора цемента надлежащего минерального состава и тонкости помола ускорение твердения бетона достигают тепловлажностной обработкой (пропариванием, автоклавной обработкой), введением специальных добавок и их сочетанием.

Основные свойства портландцемента

К основным свойствам портландцемента относятся тонкость помола, водопотребность, сроки схватывания, равномерность изменения объема и прочность (марка или активность) цемента. При необходимости оценивают и другие свойства: плотность и насыпную плотность, тепловыделение, стойкость в различных условиях среды и т. п.

Тонкость помола — один из факторов, определяющих быстроту твердения и прочность цементного камня. Обычный портландцемент измельчают довольно тонко — остаток на сите № 008 (4900 отв/см2) не должен превышать 15%, что соответствует удельной поверхности цемента 2500...3000 см2/г.

Водопотребность портландцемента характеризуется количеством воды (% массы цемента), которое необходимо для получения цементного теста нормальной густоты, т. е. заранее заданной стандартной пластичности, определяемой погружением в тесто цилиндра пестика прибора Вика. Водопотребность зависит от минерального состава и тонкости помола цемента и колеблется в пределах 22…26 %.

Сроки схватывания и равномерность изменения объема цемента определяют на тесте нормальной густоты. Начало схватывания цементного теста должно наступать не ранее 1 час, а конец схватывания — не позднее 10 ч. Сроки схватывания определяют с помощью прибора Вика путем погружении иглы этого прибора в тесто нормальной густоты. Для получения нормальных сроков схватывания при помоле клинкера вводят добавку двуводного гипса, а в случае необходимости — специальные добавки — замедлители или ускорители схватывания.

Процесс твердения цементного камня сопровождается объемными деформациями: набуханием при твердении в воде, усадкой при твердении на воздухе. Эти неизбежные изменения объема учитываются в производстве строительных работ, предусматривая устройство усадочных швов. Неравномерное изменение объема цементного камня при твердении связано с наличием в клинкере свободных оксидов кальция и магния, которые при гидратации расширяются, вызывая местные деформации. По стандарту равномерность изменения объема определяют в образцах-лепешках, изготовленных из теста нормальной густоты, которые через 24 ч предварительного твердения кипятят 3 ч в воде. Лепешки не должны деформироваться, на них не допускаются радиальные трещины. Цемент, не обладающий равномерностью изменения объема, нельзя применять в строительстве.

Прочность портландцемента является главным свойством, характеризующим его качество. В зависимости от предела прочности при сжатии и с учетом предела прочности при изгибе стандартных образцов-балочек через 28 суток твердения портландцемент разделяют на марки: 400, 500, 550, 600 (табл. 5.1).

Таблица 5.1. Требования к маркам портландцемента

Марка цемента

Предел прочности, МПа

при изгибе

при сжатии

400

5,4

39,2

500

5,9

49,0

550

6,1

53,9

600

6,4

58,8

Фактическую прочность, полученную при испытании на осевое сжатие половинок указанных образцов в МПа, называют активностью цемента.

Прочность цемента при нормальных условиях твердения наиболее интенсивно нарастает в первые 7 суток твердения. Уже к 3 суткам она составляет 30...35 %, а к 7 сут—60...70 % от марки цемента. В дальнейшем рост прочности замедляется, но продолжается длительное время (месяцы, годы), следуя зависимости, близкой к логарифмической.

Тепловыделение при твердении цемента зависит от минерального состава и тонкости измельчения цемента и составляет через 7 сут твердения 168...335 кДж/кг цемента. При полной гидратации 1 кг С3А выделяет 1090 кДж, C3S — 670 кДж, C4AF — 570 кДж и C2S — 353 кДж теплоты. При изготовлении тонких бетонных конструкций теплота гидратации быстро рассеивается и не вызывает существенного разогрева бетона. При возведении массивных бетонных конструкций (плотины, фундаменты, толстые стены и т. д.) возможно повышение температуры до 50 °С и более, что может вызвать значительные перепады температур в наружных и внутренних зонах, возникновение температурных напряжений, которые нередко являются причиной появления трещин в бетоне. В некоторых случаях, например при бетонировании конструкций в холодное время, повышенное тепловыделение играет положительную роль, способствуя поддержанию положительной температуры бетона.

Стойкость затвердевшего цемента

Разрушение цементного камня может происходить под влиянием физических факторов (насыщение водой, попеременное замораживание и оттаивание, увлажнение и высыхание и т. п.), а также при химическом взаимодействии компонентов камня с агрессивными веществами, содержащимися в окружающей среде.

Морозостойкость цементного камня зависит от минерального состава клинкера, тонкости помола цемента и водопотребности, необходимой для получения удобоукладываемой смеси. Среди минералов клинкера наименее морозостойким является С3А, максимально допустимое содержание которого в цементах для морозостойких бетонов должно составлять не более 5...8 %. Тонкость помола может быть в пределах от 3000 до 4000 см2/г, при этом важное значение имеет наличие в цементе наряду с тонкими фракциями относительно крупных зерен, которые обеспечивают «клинкерный фонд» для самозалечивания дефектов, возникающих при попеременных воздействиях среды. Увеличение водопотребности цемента снижает морозостойкость цементного камня, так как при этом повышается его капиллярная пористость (вода в порах геля не переходит в лед даже при сильных морозах). Поэтому в морозостойких бетонах значение В/Ц принимают не более 0,4...0,55.

Химическая стойкость цементного камня связана со скоростью и глубиной коррозионных процессов, вызываемых воздействием агрессивных газов и жидкостей на его составные части, главным образом на Са(ОН)2 и 3·СаОхAl2O3х6H2O.

Исследования, проведенные советскими учеными (А. А. Байковым, В. В. Киндом, В. Н. Юнгом, С.Д. Окороковым, В. М. Москвиным и др.), позволили установить сущность коррозии цементного камня и рекомендовать методы борьбы с ней. В. М. Москвин разделил коррозионные процессы, возникающие в цементном камне, на три вида.

Коррозия  первого вида — разрушение цементного камня в результате растворения и вымывания некоторых его составных частей (коррозия выщелачивания). При действии воды на цементный камень вначале растворяется и уносится водой свободный гидроксид кальция, образовавшийся при гидролизе C3S и C2S, содержание которого в цементном камне через 1...3 месяца твердения достигает 10...15%, а растворимость при обычных температурах l,3 г/л. После вымывания свободного гидроксида кальция и снижения его концентрации ниже 1,1 г/л начинается разложение гидросиликатов, а затем гидроалюминатов и гидроферритов кальция. В результате выщелачивания повышается пористость цементного камня и снижается его прочность. Процесс коррозии первого вида ускоряется, если на цементный камень действует мягкая вода или вода под напором. Одной из мер ослабления коррозии выщелачивания является применение цемента с умеренным содержанием C3S и выдерживание бетонных изделий на воздухе для того, чтобы на их поверхности прошел процесс карбонизации и образовалась малорастворимая корка из СаСО3. Главным же средством борьбы с выщелачиванием гидроксида кальция является применение плотного бетона и введение в цемент активных минеральных добавок, связывающих Са(ОН)2 в малорастворимое соединение — гидросиликат кальция:

Са(ОН)2 + SiO2(аморф.)  + mH2O = CaO  ·SiO2 n Н2О.

Коррозия второго вида происходит при действии на цементный камень агрессивных веществ, которые, вступая во взаимодействие с составными частями цементного камня, образуют либо легкорастворимые и вымываемые водой соли, либо аморфные массы, не обладающие связующими свойствами (кислотная, магнезиальная коррозия, коррозия под влиянием некоторых органических веществ и т. п.).

Кислотная коррозия возникает при действии растворов любых кислот, за исключением поликремниевой и кремнефтористоводородной. Кислота вступает в химическое взаимодействие с гидроксидом кальция, образуя растворимые соли (например, СаС12) и соли, увеличивающиеся в объеме (CaSO4х2H2O):

Са(ОН)2 + 2НС1 = СаС12 + 2Н2О      или     Са(ОН)2 + H2SO4 = CaSO4 +2H2O

Под действием кислот могут разрушаться также и гидросиликаты, гидроалюминаты и гидроферриты кальция, превращаясь в кальциевые соли и аморфные бессвязанные массы SiO2 х nH2O, A12(OH)3, Fe2(OH)3.

От слабой кислотной коррозии (рН— 4...6) бетоны защищают кислотостойкими материалами (окраской, пленочной изоляцией и т. п.). При сильной кислотной коррозии (рН<4) вместо обычного бетона на портландцементе используют бетон на кислотоупорном цементе и кислотостойких заполнителях или бетон на основе полимерных связующих.

Углекислотная коррозия является разновидностью общекислотпой коррозии. Она развивается при действии на цементный камень воды, содержащей свободный диоксид углерода в виде слабой угольной кислоты сверх равновесного количества. Избыточная (агрессивная) углекислота разрушает ранее образовавшуюся карбонатную пленку вследствие образования хорошо растворимого бикарбоната кальция:

CaCO3 + СO2 + Н2О= Са(НСO3)2

Магнезиальная коррозия наступает при воздействии на гидроксид кальция растворов магнезиальных солей, которые встречаются в грунтовой, морской и других водаx. Наиболее характерные реакции для этого вида коррозии проходят по следующей схеме:

Са(ОН)2 + MgCl2 = СаС12 + Mg(OH)2

Са(ОН)2 + MgSO4 = CaSO4 х2H2O + Mg(OH)2

Хлорид кальция и двуводный сульфат кальция хорошо растворимы в воде и вымываются из цементного камня. К тому же двуводный сульфат кальция возникает с увеличением объема, что ускоряет появление трещин в бетоне, а также коррозию третьего вида (см. далее). Гидроксид магния малорастворим в воде, но выпадает в осадок в виде рыхлой аморфной массы, не обладающей связностью, которая также легко вымывается из бетона. Меры защиты от магнезиальной коррозии те же, что и при коррозии первого вида.

Коррозия под действием органических кислот, как и неорганических, быстро разрушает цементный камень. Вредное влияние оказывают и масла, содержащие кис лоты жирного ряда (льняное, хлопковое, рыбий жир и т. п.). Нефть, нефтяные продукты (керосин, бензин, мазут, нефтяные масла) не опасны для цементного бетона, если в них нет остатков кислот, но они легко проникают через бетон. Продукты разгонки каменноугольного дегтя, содержащие фенолы, оказывают агрессивное воздействие на бетон.

Коррозия возникает и под действием минеральных удобрений, особенно аммиачных (аммиачная селитра и сульфат аммония). Аммиачная селитра, состоящая в основном из NН4NO3, действует на гидроксид кальция:

Са(ОН)2 + 2NH4NO3 + 2Н2О =Ca(NO3)22О + 2NO3

 Образующийся нитрат кальция хорошо растворяется в воде и вымывается из бетона. Из фосфорных удобрений агрессивен суперфосфат, состоящий в основном из Са(Н2РО4)2, гипса и содержащий небольшое количество свободной фосфорной кислоты.

Коррозия третьего вида объединяет процессы, при которых компоненты цементного камня, вступая во взаимодействие с агрессивной средой, образуют соединения, занимающие больший объем, чем исходные продукты реакции. Это вызывает появление внутренних напряжений в бетоне и его растрескивание. Характерной коррозией этого вида является сульфатная коррозия. Сульфаты, часто содержащиеся в природной и промышленных водах, вступают в обменную реакцию с гидроксидом кальция, образуя гипс CaSO4-2H2O. Разрушение цементного камня в этом случае вызывается кристаллизационным давлением кристаллов двуводного гипса (гипсовая коррозия). Такая коррозия происходит при значительных концентрациях сульфатов в воде.

Сульфоалюминатная коррозия возникает вследствие взаимодействия гипса с гидроалюминатом цементно го камня по уравнению:

3СаО -А12О3.6Н2О + 3CaSO4 + (25...26) Н2О = 3СаО- А12О3 -3CaSO4 (31.. .32) Н2О

Образование в порах цементного камня малорастворимого трехсульфатного гидросульфоалюмината кальция (эттрингита) сопровождается увеличением объема твердой фазы примерно в 2 раза. Вследствие разрушающего действия на цементный камень и внешнее сходство кристаллов гидросульфоалюмината (в виде игл) с некоторыми бактериями его иногда называют «цементной бациллой».

Для предотвращения сульфатной коррозии используют плотные бетоны на специальном сульфатостойком портландцементе или других сульфатостойких цементах.

Коррозия под действием концентрированных растворов щелочей, особенно при последующем высыхании, возникает в результате образования соединений, кристаллизующихся с увеличением в объеме (например, соды или поташа при насыщении бетона едким натром или едким кали). В слабощелочной среде цементный камень не подвергается коррозии.

Защита бетона и других материалов от коррозии вызывает большие расходы. Например, при строительстве химических заводов на антикоррозионную защиту зданий и аппаратов расходуется около 10...15% от общей стоимости строительства. Поэтому при строительстве зданий и сооружений необходимо, прежде всего, определить характер возможного действия среды на бетон, а затем разработать и осуществить нужные меры для предотвращения коррозии, которые в общем виде сводятся к следующему:

1) правильный выбор цемента,

2) изготовление особо плотного бетона,

3) применение защитных покрытий.

Применение портландцемента. Изделия и конструкции, изготовленные на основе портландцемента, широко используют в надземных, подземных и подводных условиях. Его применяют для изготовления монолитного и сборного бетона и железобетона в жилищном, промышленном, гидротехническом, до рожном строительстве и т. д. На нем изготовляют тяжелые и легкие бетоны, ячеистые бетоны, строительные растворы высоких марок, теплоизоляционные материалы и т. д. Портландцемент не следует применять для конструкций, подвергающихся воздействию морской, минерализованной и даже пресной воды проточной или под сильным напором. В этих случаях рекомендуется использовать цементы специальных видов (сульфатостойкие, цементы с добавками).

Портландцемент, являющийся высококачественным и дефицитным материалом, необходимо расходовать экономно, заменяя его, где это технически возможно, более дешевыми вяжущими веществами — известью, гипсовыми вяжущими, смешанными цементами.

Хранение портландцемента должно осуществляться в закрытых складах раздельно по видам и маркам, смешивание разных цементов не допускается. При длительном хранении цемента даже в оборудованных складах все же происходит частичная его гидратация, в результате чего цемент теряет активность (что равносильно потери части цемента).

5.4.5. Разновидности портландцемента

При получении цементов с заданными специальными свойствами используют следующие основные пути:

1. регулирование минерального состава и структуры цементного клинкера;

2. регулирование тонкости помола и зернового состава цемента (влияют на скорость твердения, прочность, тепловыделение и др. свойства);

3. введение в состав цемента минеральных и органических добавок.

Существует более 70 разновидностей портландцемента. Приведу наиболее часто встречающиеся разновидности портландцемента и их краткую характеристику и особенности.

Быстротвердеющий портландцемент (БТЦ) отличается от обычного портландцемента более интенсивным набором прочности в первые 3 суток твердения. Согласно требованиям стандартов  БТЦ М400 должен иметь через 3 суток твердения в нормальных условиях предел прочности при сжатии не менее 24,5 МПа, а БТЦ М500 — не менее 27,5 МПа. В дальнейшем рост прочности замедляется ,и к 28 сут прочность БТЦ такая же, как обычного портландцемента М400 и 500.

Быстрое твердение БТЦ достигается повышенным содержанием в клинкере активных минералов (содержание C3S+С3А составляет 60...65%) и более тонкого помола цемента (удельная поверхность 3500...4000 см2/г). При помоле БТЦ допускается введение активных минеральных добавок осадочного происхождения (не 'более 10 %) или доменных гранулированных шлаков (до 20 % от массы цемента).

Разновидностью быстротвердеющего цемента является особо быстротвердеющий портландцемент (ОБТЦ), который характеризуется не только большой скоростью твердения в начальный период, но и высокой маркой (М600...700). Его изготовляют тонким измельчением клинкера, содержащего C3S 65...68 % и С3А не более 8 %, совместно с добавкой гипса, до удельной поверхности 4000...4500 см2/г и более. Введение минеральных добавок не допускается.

Разработан также сверхбыстротвердеющий цемент (СБТЦ) специального минерального состава, который обеспечивает интенсивное нарастание прочности уже в первые сутки его твердения (через 6 часов — 10 МПа).

Интенсивность роста прочности бетона на быстротвердеющих цементах возрастает в условиях тепловлажностной обработки изделий при температуре 70...80°С. При этом через 4...6 ч удается получить изделия с прочностью, соответствующей 70...80 % 28-суточной.

Быстротвердеющие портландцемента целесообразно применять при массовом производстве сборных железо бетонных изделий, а также при зимних бетонных работах. Их применение дает возможность сократить расход цемента, длительность тепловлажностной обработки или даже отказаться от нее, тем самым увеличить оборот форм и сэкономить металл. Нельзя применять такие цементы для бетонов массивных конструкций и подвергающихся сульфоалюминатной коррозии.

Сульфатостойкий портландцемент (СПЦ) отличается от обычного портландцемента не только более высокой стойкостью к сульфатной коррозии, но и пониженной экзотермией при твердении и повышенной морозотойкостью. Клинкер для изготовления СПЦ должен содержать не более 50 % C3S, не выше 5 % С3А и не более 22 % C3A+C4AF. Сульфатостойкий портландцемент вы пускают М400. Его целесообразно применять в тех случаях, когда одновременно требуется высокая стойкость против воздействия сульфатных вод и попеременного замораживания и оттаивания, высыхания и увлажнения в пресной или слабоминерализованной воде.

Белый и цветные портландцементы — это декоративные вяжущие материалы, использование которых в строительстве позволяет улучшить эстетический вид зданий и сооружений при меньших затратах, чем с другими отделочными материалами.

Белый портландцемент получают путем измельчения белого клинкера совместно с добавками гипса и белого диатомита (до 6 %). Чтобы получить белый клинкер, не обходимо для приготовления сырьевой смеси применять карбонатные породы и глины с малым содержанием оксидов железа (до 0,4...0,5 %) и марганца (до 0,005...0,15 %). Для повышения белизны клинкера его подвергают отбеливанию, сущность которого заключается в восстановлении присутствующего в клинкере Fе2O3 до Fe3O4, обладающей малой красящей способностью.

Основным показателем качества белого цемента как декоративного материала является степень его белизны. По степени белизны белый портландцемент разделяют на три сорта (первый, второй и третий), а по прочности при сжатии — на марки М 400 и М 500.

Цветные цементы изготовляют путем совместного помола белого клинкера и свето- и щелочестойких пигментов или непосредственно из цветного цементного клинкера. Цветные клинкеры, по предложению П. И. Боженова, получают, вводя в сырьевые смеси небольшое количество (0,05...1%) оксидов некоторых металлов (кобальта— коричневый цвет, хрома — желто-зеленый, марганца — голубой и бархатно-черный и др.).

Портландцементы с органическими поверхностно-активными добавками получают путем совместного помола портландцементного клинкера, гипса и небольшого количества (0,1...0,3 % от массы цемента) добавок поверхностно-активных веществ (ПАВ). Допускается по согласованию с потребителем выпускать не только портландцемент, но все цементы с поверхностно-активными добавками, не выделяя их в особый класс. Основное назначение добавок ПАВ сводится к повышению пластичности цементного теста, растворных и бетонных смесей при том же содержании в них воды, либо к снижению водопотребности смеси и расхода цемента при сохранении заданной подвижности и проектной прочности бетона. Вместе с тем ПАВ оказывают положительное влияние на формирование структуры цементного камня и способствуют повышению морозостойкости, водонепроницаемости и других свойств бетона, а также повышают производительность мельниц цементных заводов (на 10...15 %) при одновременном снижении рас хода электроэнергии.

Поверхностно-активные вещества в зависимости от их влияния на свойства цементов и цементного камня под разделяют на гидрофильно-пластифицирующие, повышающие смачиваемость цементного порошка водой, и гидрофобно-пластифицирующие, понижающие смачиваемость. В соответствии с этим портландцемента с гидрофильными добавками называют пластифицированными, а с гидрофобными добавками — гидрофобными.

Пластифицированный портландцемент получают при помоле клинкера с добавкой гидрофильно-пластифицирующих веществ (0,15...0,25 % массы цемента). В качестве такой добавки используют лигносульфонат технический (ЛСТ), который получают, как отход при сульфитной варке целлюлозы. ЛСТ состоит в основном из лигносульфонатов кальция. Адсорбируясь на поверхности зерен цемента, лигносульфонат кальция улучшает их смачивание водой. Образующиеся адсорбционно-гидратные слои воды обеспечивают гидродинамическую смазку зерен,   уменьшая трение между ними, и одновременно препятствуют их слипанию в хлопья (флокулы), благодаря чему повышается пластичность цементного теста, а следовательно, и бетонной смеси и их устойчивость к расслоению.   Другие свойства пластифицированного портландцемента (сроки схватывания, скорость твердения, прочность)  примерно те же, что и у обычных портландцементов. Применение пластифицированного портландцемента дает  возможность    снизить трудоемкость укладки    бетонной смеси, уменьшить расход цемента или (при том же расходе цемента и равной подвижности смеси) снизить водоцементное отношение и тем самым увеличить плотность, прочность, морозостойкость и водонепроницаемость   бетона. Этот цемент широко используют в дорожном, аэродромном и гидротехническом строительстве.

Гидрофобный портландцемент, предложенный М. И. Хигеровичем и Б. Г. Скрамтаевым, получают, вводя при помоле клинкера 0,1...0,3 % мылонафта, асидола, окисленного петролатума, синтетических жирных кислот, их кубовых остатков и других гидрофобизирующих поверхностно-активных добавок.

Молекулы гидрофобизирующих веществ имеют асимметрично-полярное строение и состоят из полярной группы (например, СООН или COONa) и неполярной (углеводородного радикала). Эти молекулы в процессе помола адсорбируются на поверхности цементных зерен, ориентируясь полярной группой к поверхности цементного зерна, а углеводородным радикалом наружу, придавая цементу гидрофобные (водоотталкивающие) свойства. Поэтому гидрофобный цемент в отличие от обычного портландцемента при длительном хранении даже в очень влажных условиях не комкуется и сохраняет активность. Адсорбированные на поверхности цементных зерен весьма тонкие (практически в одну молекулу) гидрофобные пленки в процессе перемешивания смесей легко снимаются и не препятствуют нормальному течению процессов твердения цемента. Оставаясь в смеси, гидрофобизирующие вещества адсорбируются на поверхности новообразований, оказывая смазывающее действие и уменьшая трение между частицами смеси, вследствие чего повышаются ее пластичность и однородность. В затвердевшем цементном камне эти вещества располагаются на поверхности пор и капилляров камня и способствуют уменьшению водопоглощения и капиллярного подсоса. Благодаря указанным свойствам бетоны и растворы на гидрофобном цементе имеют более высокую водо- и морозостойкость и водонепроницаемость, чем бетоны на обычном цементе.

Гидрофобный цемент целесообразно использовать при изготовлении бетонов для гидротехнического, дорожного, аэродромного строительства, а также в случаях, когда цемент необходимо длительно хранить и перевозить на дальние расстояния.

Портландцементы с активными минеральными   добавками

 Активные минеральные (иначе гидравлические) добавки могут быть природными и искусственными. К природным активным минеральным добавкам относят некоторые осадочные горные породы (диатомит, трепел, опоку, глиежи — естественно обожженные глинистые породы), а также породы вулканического происхождения (вулканический пепел, туф, пемзу, трасс). В качестве искусственных активных минеральных добавок используют побочные продукты и отходы промышленности: быстроохлажденные (гранулированные) доменные и электротермофосфорные шлаки, топливные золы и шлаки, нефелиновый шлам (побочный продукт производства глинозема, состоящий на 80 % из двухкальциевого силиката), обожженные при температуре до 800 °С глины (глиниты, цемянка) и др.

В составе минеральных добавок в значительном количестве содержатся химически активные составляющие: аморфный водный диоксид кремния (диатомиты, трепелы и другие осадочные породы); аморфный диоксид кремния и алюмосиликаты (вулканические и искусственные добавки); метакаолинит и активный глинозем (в добавках, содержащих обожженное глинистое вещество — глиниты, глиежи, зола-унос и топливные шлаки). Если такие добавки тонко измельчить, то в присутствии влаги, даже при обычной температуре, они способны взаимодействовать с гидроксидом кальция, находящимся в извести или выделившимся при твердении портландцемента, образуя практически нерастворимые продукты реакции. В простейшем виде этот процесс можно выразить уравнением

т Са(ОН)2 + SiO2 + nН2О = (0,8... 1,5) CaO ·SiO2 + рH2O

В результате воздушная известь приобретает гидравлические свойства, а портландцемент — специальные свойства и более низкую себестоимость.

В зависимости от вида активной минеральной добавки и ее количества портландцемента с минеральными добавками разделены на три вида: портландцемент с минеральными добавками (ПЦД), пуццолановый портландцемент (ППЦ) и шлакопортландцемент (ШПЦ).

Портландцемент с минеральными добавками (ПЦД) получают измельчением клинкера, минеральных добавок и гипса. Предельно допустимое содержание минеральных добавок в цементе не должно превышать 20 %. При этом практически сохраняются все свойства портландцемента, кроме морозостойкости (она несколько ниже), а некоторые свойства улучшаются (больше водостойкость, меньше тепловыделение, более высокая сопротивляемость коррозии первого вида). При его получении экономится портландцементный клинкер, что способствует снижению себестоимости цемента. Марки такого цемента те же, что и у портландцемента: 400, 500, 550 и 600. По специальному разрешению допускается на отдельных заводах выпускать ПЦД М 300. ПЦД успешно применяют в строительстве вместо портландцемента, за исключением случаев, когда требуется высокая морозостойкость.

 Портландцемент с минеральными добавками имеет разновидности: быстротвердеющий портландцемент  и сульфатостойкий портландцемент с минеральными добавками. Для получения указанных цементов используют клинкер, состав которого аналогичен клинкеру со ответственно быстротвердеющего и сульфатостойкого портландцемента, и минеральные добавки — гранулированный шлак (не более 10...20%) или трепел, опоку, диатомит (не более 5...10 %). Такие цементы вы пускают М400 и 500 и применяют практически наравне с быстротвердеющим и сульфатостоиким портландцементом.

Пуццолановый портландцемент изготовляют путем совместного топкого помола клинкера, содержащего не более 8 % СзА, необходимого количества гипса и актив ной минеральной добавки 20...40 %, или тщательным смешиванием тех же материалов, измельченных раздельно. Содержание активных минеральных добавок устанавливают с учетом активности минеральной добавки и минерального состава клинкера. В соответствии с ГОСТ 22266—76 он отнесен к группе сульфатостойких цементов и выпускается М 3ОО и M 400.

Шлакопортландцемент (ШПЦ) изготовляют так же, как и пуццолановый портландцемент, но в качестве активной минеральной добавки используют доменные гранулированные шлаки, содержание которых должно быть не менее 21 % и не более 80 % от массы цемента.

Доменные шлаки представляют собой продукт сплавления веществ, находящихся в пустой породе руды и топлива в основном в виде глины с флюсами (плавнями), которыми обычно являются известняк и доломит. При выплавке 1 т чугуна в среднем получается 0,6...0,75 т шлака. По химическому составу доменные шлаки в основном

состоят из CaO, SiO2, А12О3 и отчасти MgO, суммарное содержание которых достигает 90...95%.   При высокой температуре в доменной печи диоксид кремния и оксид алюминия глинистых минералов взаимодействуют с оксидом кальция. При этом образуются малоосновные силикаты и алюминаты кальция. Структура и состав соединений в шлаках зависят не только от его химического состава, но и от условий охлаждения. Медленно охлажденный шлаковый расплав успевает закристаллизоваться, и образующийся шлак представляет собой конгломерат различных устойчивых соединений в кристаллическом виде, сцементированных тем или иным количеством шлакового стекла. При быстром охлаждении расплав не успевает   закристаллизовываться   и   шлак   образуется в стекловидном состоянии. В этом случае он имеет большую химическую активность. Поэтому для изготовления вяжущих веществ используют шлаки, которые получают быстрым охлаждением    расплава водой.    Такие шлаки имеют вид зерен (гранул) размером до 10 мм, отсюда их название —гранулированные.

Качество доменных гранулированных шлаков характеризуют модулями основности М0 и активности Ма:

                            

Если модуль основности равен или больше единицы шлак называют основным, при модуле меньше единицы— кислым. Гидравлическая активность доменных шлаков в большинстве случаев с увеличением М0 и особенно Ма возрастает. Если основные шлаки измельчить и смешать с водой, то они схватываются и затвердевают, т. е. обладают самостоятельными вяжущими свойствами особенно в присутствии активизаторов (например, извести или гипса). Такие шлаки можно вводить в шлакопортландцемент до 50...80 %. Кислые шлаки не обладают самостоятельными вяжущими свойствами, но при наличии гидроксида кальция, выделяющегося при твердении клинкерной части шлакопортландцемента, твердеют, образуя низкоосновные гидросиликаты и гидроалюминаты кальция. Во избежание значительного снижения морозостойкости и водонепронцаемости бетонов их дозировка должна быть умеренной — не более 40 %.

Шлакопортландцемент   выпускают трех марок-   300, 400, 500. Он имеет две разновидности: быстротвердеющий шлакопортландцемент и сульфатостойкий шлакопортландцемент .

Быстротвердеющий шлакопортландцемент изготовляют из высококачественных клинкеров и активных гранулированных шлаков, размалывая их до 4000... 5000 см2/г.  3 сут БШПЦ должен приобрести прочность при сжатии не менее 13,6 МПа, при изгибе — не менее 3,4 МПа.

Сульфатостойкий шлакопортландцемент входит в группу сульфатостойких цементов. Повышенная сульфатостойкость этого цемента обеспечивается применением клинкера и гранулированного шлака, в которых А12О3 не более 8%. Другие минеральные добавки, кроме шлака, не допускаются. При таком составе вяжущего в затвердевшем камне преобладают низкоосновные гидросиликаты и гидроалюминаты кальция и практически отсутствует свободный гидроксид кальция, что и способствует повышению сульфатостойкости шлакопортландцемента по сравнению с портландцементом.

Твердение цементов с активными минеральными добавками

Процесс твердения пуццоланового и шлакопортландцемента более сложен, чем у портландцемента, поскольку в нем участвуют оба их компонента — клинкер и активная минеральная добавка. При затворении этих цементов водой вначале преимущественное развитие получают гидролиз и гидратация клинкерных зерен. В результате образуются те же соединения, что и при затворении портландцемента. Затем возникают вторичные процессы — взаимодействие продуктов гидратации и прежде всего гидроксида кальция с активной минеральной добавкой с образованием в зависимости от вида добавки нерастворимых в воде гидросиликатов и гидроалюминатов кальция. Вторичные процессы при обычной темпера туре протекают продолжительное время и требуют влажных условий. Поэтому пуццолановый и обычный шлакопортландцементы по сравнению с портландцементом характеризуются относительно медленным нарастанием прочности в начальные сроки твердения, но марочная прочность их примерно одинакова.

Твердение пуццоланового и шлакопортландцементов сопровождается меньшей экзотермией, что позволяет использовать эти цементы для бетонирования массивных сооружений (плотины, фундаменты и т. п.). Использование их в зимних условиях вызывает трудности, так как при температуре ниже 10 °С процессы схватывания и твердения резко замедляются, а при температуре ниже 5°С совсем прекращаются. Наоборот, при повышенных температурах пуццолановый и шлакопортландцементы твердеют более интенсивно, чем портландцемент, поэтому изделия из бетона на этих цементах целесообразно подвергать тепловлажностной обработке.

Свойства. Стойкость пуццоланового и шлакопортландцементов при воздействии пресных, особенно мягких, и сульфатных вод выше, чем портландцементов. В кислых и углекислых водах эти цементы, как и портландцементы, недостаточно стойки.

 Водопотребность пуццолановых портландцементов выше, чем у портландцементов, так как на смачивание развитой поверхности минеральных добавок требуется значительный объем воды (нормальная густота пуццоланового портландцемента 28...35%, а обычного портландцемента 22...26 %). Вследствие повышенной водопотребности и, следовательно, пористости цементного камня бетоны на пуццолановом портландцементе менее морозостойки, чем на портландцементе.  Водопотребность шлакопортландцемента существенно не отличается от водопотребности обычных портландцементов, но химически связывается воды меньше, чем при гидратации портландцемента. Это приводит к снижению плотности бетона на шлакопортландцементе и, как правило, морозостойкости по сравнению с бетоном на портландцементе.

Бетоны на пуццолановых цементах характеризуются значительными деформациями усадки и набухания, что связано с повышенным содержанием в цементном камне гелевидных новообразований и развитой сетью мельчайших капилляров. При твердении в воздушно-сухих условиях бетон на пуццолановом портландцементе теряет прочность, что объясняется большой усадкой и «выветриванием» воды из гидратных соединений, т. е. он обладает пониженной воздухостойкостью.

Усадка и набухание шлакопортландцемента приблизительно такие, как и у портландцемента. Воздухостойкость шлакопортландцемента выше, чем пуццоланового портландцемента, но уступает портландцементу.

Жаростойкость бетонов на шлакопортландцементе значительно выше, чем на портландцементе. Это объясняется главным образом, пониженным содержанием в них свободного гидроксида кальция и наличием шлаков. Вследствие меньшего содержания клинкерной части в пуццолановом и шлакопортландцементах их себестоимость ниже, чем портландцементов той же марки.

Пуццолановый портландцемент и шлакопортландцемент применяют для массивных бетонных и железобетонных конструкций подводных и подземных частей сооружений (плотин, шлюзов туннелей, канализационных и водопроводных сетей, фундаментов и т. п.). Широко используют эти цементы в производстве сборных изделий с тепловлажностной обработкой (ТВО).

Не эффективны эти цементы, в особенности пуццолановый портландцемент, в наземных конструкциях в районах с сухим климатом или в цехах с пониженной влажностью воздуха, а также в частях сооружений, подвергающихся систематическому попеременному замораживанию и оттаиванию, увлажнению и высушиванию.

Другие вяжущие с активными минеральными добавками

Кроме портландцементов с активными минеральными добавками в сравнительно небольших количествах изготовляют гидравлические вяжущие вещества на основе активных минеральных добавок и извести и гипса, тонко размазывая их совместно или раздельно, а затем смешивая. Таким путем получают известково-шлаковые, гипсо-шлаковые, известково-пуццолановые, известково-зольные и другие вяжущие. Вещественный состав этих вяжущих зависит от вида и активности минеральной добавки и условий применения вяжущего. Гидравлическое твердение обусловлено взаимодействием извести и гипса с активными составляющими гранулированных доменных шлаков (низкоосновные силикаты и алюминаты кальция) или минеральных добавок (активный кремнезем) с образованием относительно прочных и водостойких гидросиликатов и гидроалюминатов кальция.

Эти вяжущие характеризуются замедленным твердением и значительно меньшими марками по прочности и морозостойкости, чем портландцемент и его разновидности. Рациональное их применение, когда не требуется высокая прочность бетонов и растворов, приводит к эко­номии клинкерных цементов. Особенно целесообразно их использовать при изготовлении сборных изделий в автоклаве.

Гипсоцементно-пуццолановые вяжущие вещества (ГЦПВ) — продукт тщательного смешивания гипсового вяжущего (50...75%) с портландцементом или шлакопортландцементом (15...25%) и пуццолановой добавкой— трепелом, диатомитом, опокой и др. (10...25 %). Они предложены проф. А. В. Волженским. У этих вяжущих выгодно сочетаются быстрый рост прочности, обусловленный наличием полуводного гипса, и способность в отличие от гипса твердеть во влажных условиях подобно гидравлическим цементам. Необходимость введения в ГЦПВ активной минеральной добавки вызвана тем, что при твердении смеси гипса с цементом (без этой добавки) образуется камень, который через несколько месяцев может разрушиться. Причиной этого явления служит образование высокосульфатной формы гидросульфоалюмината кальция — эттрингита 3СаО·А12О3х3CaSO4·(31...32)хН2О —с большим увеличением объема. Если в такой твердеющей системе концентрацию гидроксида кальция сильно понизить, а это достигается введением активной минеральной добавки, связывающей Са(ОН)2 в гидросиликаты, то эттрингит практически не образуется. В этом случае возникает низкоосновный гидросульфоалюминат кальция без заметного увеличения объема, который способствует гидравлическому твердению указанной системы.

Гипсоцементно-пуццолановые вяжущие быстро схватываются и твердеют, что дает возможность изготовлять строительные изделия при сокращенной тепловлажностной обработке или без нее. На основе ГЦПВ можно получать бетоны прочностью 15...20 МПа и выше. Бетоны на ГЦПВ имеют коэффициент размягчения 0,6...0,8, морозостойкость,— 25...50 циклов. По сульфастойкости ГЦПВ равноценны сульфатостойкому портландцементу.

Гипсоцементно-пуццолановые вяжущие вещества используют для изготовления санитарно-технических кабин, панелей основания пола, вентиляционных блоков, изделий Для малоэтажных жилых домов и зданий сельскохозяйственного назначения.

5.4.6. Глиноземистый цемент

Глиноземистый цемент — гидравлическое вяжущее вещество, обеспечивающее получение цементного камня высокой прочности в очень короткие сроки (1...3 суток).  Этот цемент иногда называют алюминатным, так как в его составе преобладают низкоосновные алюминаты кальция (80...85%).

Сырье и производство

Сырьем для производства глиноземистого цемента служит смесь пород с высоким содержанием глинозема, чаще бокситов (А12О3·n Н2О) и известняков или извести, а также и более дешевое сырье — алюминиевые шлаки и материалы, получаемые обжигом высокоглиноземистых глин.

Глиноземистый цемент изготовляют плавлением сырьевой смеси в электрических печах, вагранках, конверторах при температуре выше 1500°С. Реже применяют обжиг до спекания при температуре около 1300°С во вращающихся печах или на агломерационной ленте.

Получившийся сплав или клинкер охлаждают и раз­малывают в порошок, как и при производстве портландцемента. Сплав и клинкер глиноземистого цемента отличаются высокой твердостью. Поэтому глиноземистый цемент трудно размалывается, требует высокого расхода электроэнергии, вызывает сравнительно быстрый износ мелющего оборудования. Это является одной из причин его высокой стоимости (он в несколько раз дороже портландцемента).

Состав и особенности твердения

Основным минералом глиноземистого цемента как по количественному содержанию, так и по вяжущим свойствам является однокальциевый алюминат СаОхА12О3 (СА). В сравнительно небольших количествах в нем содержатся другие низкоосновные алюминаты кальция (5СаОх3А12Оз и СаОх2А12О3). Силикаты кальция обычно представлены небольшим количеством белита 2CaOхSiO2.

Процесс твердения глиноземистого цемента протекает по схеме, аналогичной твердению портландцемента. Главный минерал глиноземистого цемента — однокальциевый алюминат, реагируя с водой, вначале образует СаО·Аl2O3· 10·Н2О (САН10), который сравнительно быстро (в течение нескольких часов) переходит в гель, не обладающий существенной прочностью. В этот период происходит схватывание глиноземистого цемента приблизительно с такой же скоростью, как и у портландцемента. Получающийся гель десятиводного гидрата (САН10) неустойчив и, кристаллизуясь, быстро переходит в более устойчивый 2СаОхА12O3х8Н2О (С2АН8) в кристаллической форме с одновременным выделением гидроксида алюминия в виде гелевидной массы. Переход СА в конечные продукты гидратации можно представить следующей схемой:

2 (СаО·А12О3) + 11·Н2О = 2СаО ·А12О3 ·8Н2О + 2А1(ОН)3

Твердение глиноземистого цемента протекает настолько интенсивно, что уже через сутки достигается около 90 % конечной прочности, рост которой к 3 суткам практически завершается.

Глиноземистый цемент образует цементный камень высокой плотности, пористость которого почти в 2 раза меньше, чем портландцементного. Это связано с тем, что при твердении он химически связывает воды примерно в 2 раза больше, чем портландцемент, а промежутки между кристаллами двухкальциевого гидроалюмината заполнены гидроксидом алюминия, который имеет плотное строение.

Глиноземистый цемент приобретает и длительно сохраняет высокую прочность только в том случае, если он твердеет при умеренных температурах. Если же температура превысит 25...30 °С, то происходит перекристаллизация двухкальциевого гидроалюмината (С2АН3) в трехкальциевый гидроалюминат (СзАН6), сопровождающаяся уменьшением объема новообразований примерно на 25...30 % и возникновением вредных напряжений в цементном камне, влекущих снижение прочности в 2...3 раза.

Твердение глиноземистого цемента сопровождается интенсивным выделением теплоты, достигающим через 1 сут 70...80 % полной зкзотермии. Поэтому глиноземистый цемент нельзя применять в условиях жаркого климата и при тепловлажностиой обработке изделий, и при бетонировании массивных конструкций.

Свойства и применение

Глиноземистый цемент должен иметь тонкость помола, характеризуемую остатком на сите № 008 не более 10 %. Марки глиноземистого цемента, определяемые по ГОСТ 310.4—81, через 3 суток 400, 500, 600. Сроки схватывания глиноземистого цемента: начало—не ранее 30 мин, конец — не позднее 12 ч.

Бетоны на глиноземистом цементе морозостойки и более стойки по сравнению с портландцементом против выщелачивающей коррозии, а также к растворам сульфата кальция и магния, морской и болотной воде, растворам сахара; животным и растительным маслам. Однако глиноземистый цемент быстро разрушается даже слабыми растворами солей аммония и щелочей. Его нельзя применять в щелочных средах и смешивать с известью или портландцементом.

Учитывая дефицитность сырья (бокситов) и значительную стоимость глиноземистого цемента, его выпускают в сравнительно небольших количествах (менее 1 % от общего выпуска цемента), а применяют при возведении бетонных конструкций, которые необходимо быстро ввести в эксплуатацию, для срочных аварийных и ремонтных работ, а также для тампонирования нефтяных и газовых скважин, футеровки шахтных колодцев и туннелей и т. п.

На основе глиноземистого цемента в смеси с жаростойкими заполнителями изготовляют бетоны, которые хорошо сопротивляются действию высоких температур (1000оС и выше). Глиноземистый цемент используют также для получения расширяющихся цементов.

5.4.7. Расширяющиеся и безусадочные цементы

Твердение всех гидравлических вяжущих веществ в воздушной среде сопровождается уменьшением объема цементного камня (усадкой). Усадочные деформации могут привести к образованию трещин в бетонах, что нарушает монолитность конструкций и снижает их долго вечность. Для расширяющихся и безусадочных цементов характерно равномерное приращение объема цементного камня в начальный период твердения, что компенсирует усадочные явления. Линейное расширение у расширяющихся цементов обычно составляет 0,3...1 %, у безусадочных — 0,01...0,1 %.

Многочисленные виды расширяющихся цементов, в разработку которых большой вклад внесли советские ученые (В. В. Михайлов, Б. Г. Скрамтаев, И. В. Кравченко, П. П. Будников и др.), представляют собой смешанные цементы, состоящие из основного вяжущего вещества (глиноземистый или портландцемент) и компонентов, обеспечивающих увеличение объема цементного камня в начальный период твердения (в большинстве случаев гипс, высокоосновные гидроалюминаты кальция, глиноземистые шлаки).

В процессе твердения цементов образуется трехсульфатный гидросульфоалюминат кальция 3СаОхАl2О3х3CaSO4х(31...32)H2О и возникает связанный с этим эффект расширения.

Наибольшее применение нашли следующие расширяющиеся цементы: на основе глиноземистого цемента — водонепроницаемый расширяющийся цемент (ВРЦ), водонепроницаемый безусадочный цемент (ВВЦ), гипсоглиноземистый цемент; на основе портландцемента— расширяющийся портландцемент (РПЦ), а на основе портландцемента и глиноземистого цемента— напрягающий цемент (НЦ).

Водонепроницаемый расширяющийся цемент (ВРЦ) получают смешиванием или совместным помолом глиноземистого цемента (70%), полуводного гипса (20%) и молотого специально изготовленного высокоосновного гидроалюмината кальция 4СаО·А12О3х13Н2О (10%).

Водонепроницаемый безусадочный цемент (ВБЦ) состоит из тех же компонентов, что и ВРЦ, но взятых в других соотношениях. Эти цементы быстро схватываются (начало схватывания — несколько минут, конец — не позднее 5...10 мин) и быстро твердеют, достигая к 3 суток 60...80 %-ной марочной прочности. Они образуют цементный камень высокой водонепроницаемости (выдерживает давление воды до 0,7 МПа), за что и получили второе название водонепроницаемых цементов. Водонепроницаемые расширяющиеся и безусадочные цементы применяют для заделки и гидроизоляции швов тюбингов, раструбных труб, стыков и трещин в бетонных и железобетонных конструкциях, подливок под машины и фундаментных болтов и т. п. Нельзя применять эти цементы в конструкциях, эксплуатируемых в среде с недостаточной влажностью или при температуре более 80 °С.

Расширяющийся портландцемент (РПЦ) получают из следующих компонентов (в % по массе): портландцементного клинкера — 58...63, высокоглиноземистого доменного шлака — 5...7, двуводного гипса — 7...10 и активной минеральной добавки — 20...25, которые совместно размалывают в тонкий порошок— цемент. РПЦ характеризуется более быстрым нарастанием прочности, чем портландцемент, особенно при кратковременном пропаривании изделий, высокой плотностью и водонепроницаемостью цементного камня до 1,2 МПа и более. Применяют РПЦ там же, где и другие расширяющиеся цементы, а также в производстве сборных железобетонных изделий, что позволяет сократить время тепловой обработки до;4...6 ч.

Напрягающий цемент (НЦ) изготовляют на основе клинкеров портландцемента (65...70%) и глиноземистого цемента (16...20%) с добавлением двуводного гипса (14...16%) путем совместного помола до удельной поверхности не менее 3500 см2/г.

Напрягающий цемент быстро схватывается (через 2...7 мин) и быстро твердеет, приобретая через сутки нормального твердения прочность до 20 МПа. Характерной особенностью этого цемента являются не только значительная величина, но и большая энергия расширения, обеспечивающие самонапряжение камня до 3...4 МПа. Это свойство НЦ позволяет использовать его для изготовления так называемых самонапряженных железобетонных конструкций, в которых натяжение арматуры возникает при расширении твердеющего цемента. При этом арматура может получить двух- и трехосное напряжение, чего трудно добиться обычными приемами натяжения арматуры.

Напрягающий цемент рекомендуется применять для изготовления напорных труб и других тонкостенных железобетонных изделий и конструкций с напряженной арматурой.

5.4.8. Шлакощелочные вяжущие

Шлакощелочные вяжущие являются специальными и имеют около 30 разновидностей.

Сырье. Шлакощелочные вяжущие являются двухкомпонентными – состоят из твердого алюмосиликатного компонента и щелочного компонента (в виде раствора). В качестве алюмосиликатных компонентов используют  как основные так и кислые гранулированных шлаков, которые размалывают до удельной поверхности 2500…3500 см2/г. Щелочной компонент  может быть 3 видов: 1) едкие щелочи (NaOH, KOH) или побочные техногенные продукты их содержащие; 2) соли слабых кислот и сильных оснований (например, сода (Na2CO3),  Na2SO3 и т.п.);  3) силикатные соли сильных оснований (обычно NaO ·n SiO2 , реже К2O ·n SiO).

Свойства. К положительным свойствам относится высокая прочность, морозостойкость, коррозионная стойкость. Некоторые составы обладают повышенной жаростойкостью.

Люди также интересуются этой лекцией: 11 Лечение и профилактика ветряной оспы.

Сроки схватывания ШЩВ согласно стандарту должны быть: начало не ранее – 45 мин, конец – не позднее 10 часов. Регулируются изменением концентрации щелочного компонента или введением добавок.

Прочность ШЩВ существенно может изменяться при изменении химического состава алюмосиликатного компонента (чаще шлака), вида и концентрации щелочного компонента. Марка ШЩВ в возрасте 28 суток может составлять от М 400 (40 МПа) до М 1200 (120 МПа).

Морозостойкость ШЩВ составляет 50…1000 циклов и более.

Коррозионная стойкость ШЩВ зависит от вида алюмосиликатного и щелочного компонента. ШЩВ на силикатных компонентах стойки практически во всех агрессивных средах.

Недостатками ШЩВ являются повышенная деформативность (ползучесть), что сдерживает их применение в железобетонных конструкциях, а также повышенная склонность к высолообразованию (особенно при неправильной дозировке щелочного компонента). Кроме того, технология производства изделий на их основе требует точной дозировки и постоянного контроля химического состава всех компонентов.

Применяют ШЩВ в основном для подземных сооружений: фундаменты, подземные коммуникации, коллекторы и т.п.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
438
Средний доход
с одного платного файла
Обучение Подробнее