Популярные услуги

Факторы пассивного иммунитета растений

2021-03-09СтудИзба

ТЕМА 3. Факторы пассивного иммунитета растений

Анатомо-морфологические особенности, регуляция онтогенеза и репарации повреждений, пищевая ценность тканей растений, химические антимикробные вещества (фитоантиципины).

Анатомо-морфологические особенности растений.

Габитус растений. Сорта картофеля, имеющие раскидистую ботву, менее поражаются фитофторозом, чем сорта с плотными кустами, хотя при искусственном заражении листьев в лаборатории никакой связи между габитусом куста и поражаемостью нет. Различия объясняются тем, что капли, необходимые для заражения, на листьях раскидистых сортов быстрее высыхают, чем у сортов с плотным кустами. Короткостебельные сорта пшеницы подверже­ны сильному поражению грибами, вызывающими пятнистости листьев, споры которых распространяются водяными брызгами (септориоз, ринхоспориоз др.), ибо расстояние между листьями (длина междоузлий) у та­ких сортов уменьшено. Сорта с опущенными вниз листьями, покрытыми к тому же густым восковым налетом, менее подвержены поражению ржавчиной, мучнистой росой, пятнистостями листьев, чем сорта с гори­зонтально расположенными или приподнятыми вверх листьями, ибо инфекционные капли в первом случае скатываются с листьев.

Опушенность листьев. Сорта малины с опушенными листьями меньше подвержены вирус­ным болезням, чем сорта с гладкими листьями. Это обусловлено затруд­ненными условиями для питания тлей-переносчиков вирусов.

Строение и расположение устьиц. Мандарин более устойчив к поражению возбудителем бактериального рака Xanthomonas citri, чем грейпфрут. Различия обусловлены тем, что наружные стенки устьиц мандарина снабжены выступами, препятствую­щими проникновению в подустичную щель капель жидкости с находящим­ся в них клетками бактерий. У восприимчивых сортов грейпфрута таких выступов нет. Виды и сорта растений с более редким расположением усть­иц на листьях, слабее поражаются грибами, гифы которых внедряются че­рез устьица (например, дикариотичные стадии возбудителей злаковых ржав­чин).

Регуляция онтогенеза и репарации повреждений. Возбудители многих болезней, таких как твердая головня пшеницы, корневые гнили всходов и др., поражают растения только на ранних этапах их развития; другие — возбудители фитофтороза картофеля, вертициллезного вилта хлопчатника и др., наоборот, стареющие ткани, в которых отток и распад углеводов преобладает над фотосинтезом. Поэтому сорта, у которых быстро протекают ранние фазы онтогенеза, слабо поражаются болезнями первой группы, а сорта, у которых замедлено наступление ста­рения, относительно устойчивы к болезням второй группы. На этом основаны также агротехнические приемы защиты растений с помощью регуляции скорости протекания отдельных фаз онтогенеза (вы­сев озимых злаков в ранние сроки, а яровых — в поздние для получения дружных, быстро растущих всходов, задержка старения азотными удоб­рениями др.).

Многие паразиты растений могут внедряться в ткани только через ран­ки (раневые паразиты). Скорость суберинизации раневых поверхностей коррелирует с устойчивостью к подобным паразитам. Поэтому помеще­ния, предназначенные для длительного хранения овощей и картофеля, снаб­жены устройствами, обеспечивающими продув воздуха с определенной температурой и влажностью через слой хранящейся продукции (активное вентилирование), ибо образование суберина требует больших энергети­ческих затрат.

Пищевая ценность зараженных органов и тканей. Хотя растения представляют для паразитов, прежде всего, питательный субстрат, пищевые достоинства, по-видимому, не являются решающими в поражаемости тех или иных видов и сортов. Поскольку отмершие растения или их части заселяются микроорганизмам, неспособными заражать те же растения в живом состоянии, устойчивость растений обусловлена не содержанием тех или иных питательных веществ, а антибиотическими свойствами живой ткани. Однако, в некоторых случаях именно пищевые достоинства обусловливают степень восприимчивости растений к тем или иным болезням. Были проведены исследования для установления связи между содер­жанием в растениях азотсодержащего соединения холина и его эфира бетаина и поражаемостью Fusarium graminearum. Сильное поражение цветков злаков обусловлено высоким содержанием холина и бетаина в пыльниках.

Рекомендуемые материалы

Химические антимикробные вещества (фитоантиципины). Химические факторы, с помощью которых растения защищают себя от болезней, многообразны по химическому составу, условиям образова­ния и механизмам токсичности.

В 1928 г. российский зоолог Б.П. Токин обнаружил токсичность для Protozoa лету­чих соединений из гомогенатов лука и чеснока. Токсические летучие сое­динения из растений он назвал фитонцидами. В 1941 г. немецкий фитопатолог К. Мюллер обнаружил, что в ответ на заражение картофеля авирулентной расой Phytophthora infestans в ткани клубня накапливаются ток­сические вещества, названные им фитоалексинами. Используя эти тер­мины, Л.В. Метлицкий и О.Л. Озерецковская (1975) предложили все (а не только летучие) антибиотические вещества растений, образующиеся консти­тутивно, независимо от заражения, называть фитонцидами, а соединения, синтез которых индуцируется заражением — фитоалексинами. В дальнейшем предлагались более сложные классификации. Однако в 1994 г. группа исследо­вателей (Г. Ван Эттен, Дж. Мансфилд и др.) предложили вернуться к двум группам растительных антибиотиков, которые они назвали фитоантщипинами и фитоалексинами. Первые — "низкомолекулярные антимикробные вещества, присутствующие в растении до заражения или продуцируемые после заражения из предшественников", вторые — "низкомолекулярные антимикробные вещества, которые синтезируются и аккумулируются в растении после экспозиции с паразитом". Синтез фитоалексинов происходит в процессе активной реакции растений, то есть относится к факторам активного иммунитета, и будет рассмотрен ниже.

Разделение антимикробных веществ растений на фитоантиципины и фитоалексины отчасти условно, как условно большинство биологических класси­фикаций. Например, некоторые вещества в одних видах растений конститутивные, т.е. являются фитоантиципинами, а в других — индуцируются заражением (фитоалексины).

Химическая классификация фитоантиципинов

Фенолы. К фенолам относят циклические соединения, содержащие ароматическое кольцо с фенильным гидроксилом или его замещенными радикалами (кислотным, альдегидным и проч.). Многие растительные фенолы помимо фенила (С6) содержат пропановый радикал (С3) и названы фенпппропаноидами.

Исследование растительных фенолов хорошо иллюстрирует условность деления антибиотических веществ на конституционные и индуцибельные. Фенолы — нормальные метаболиты растений, ибо входят в состав пигмен­тов, регуляторов роста, структурных элементов клеточных стенок. В то же время фенолы — стрессовые метаболиты, синтез которых резко возрастает при поранении или заражении.

Окислительно-восстановительная реакция превращения фенолов в общем виде описывается следующим образом:

полифенолоксидаза

½О2 + дифенол ↔ хинон + Н2О

хинонредуктаза

Основные механизмы антимикробного действия фе­нолов:

1. Инактивация белков вследствие соединения хинонов с SH-, NH2 группами и формирования замещенных продуктов.

2. Неспецифическое окислительное действие хинонов. Будучи активными окислителями, хиноны являются акцепторами электронов у многих соединений.

3. Влияние на трансмембранный транспорт веществ. Некоторые замещенные фенолы служат проводниками протонов в мембранах и в след­ствие этого действуют как разобщающие агенты.

4. Создание химических барьеров. Продукты окисления фенольных спи­ртов, конденсированные в результате свободнорадикальных реакций, обра­зуют аморфный 3-мерный полимер лигнин, откладывающийся в клеточных стенках (обычно во вторичных стенках и стенках мертвых кле­ток). Защитное действие лигнина многообразно. Он ковалентно связывает­ся с углеводными полимерами растительной клеточной стенки и защища­ет их от атаки грибными деполимеразами; препятствует диффузии в клетки растений метаболитов патогенных организмов; обладает прямой токсич­ностью для микроорганизмов; может лигнифицировать внутрирастительные гифы грибов.

Терпеноиды. К терпеноидам относят соединения, синтезируемые из уксусной кислоты путем конденсации ее молекул. Первый продукт конден­сации — изопрен — содержит 5 атомов углерода. В построе­нии терпеноидов участвуют 2 группы ферментов — полимеразы, соединя­ющие молекулы изопрена в цепочку, и циклазы, осуществляющие преоб­разование цепочек в замкнутые кольца.

Конденсация двух молекул изопрена дает группу соединений, назван­ных монотерпенами. Эти низкомолекулярные моноцикли­ческие летучие вещества часто придают растениям специфические запахи. Конденсация трех молекул изопрена приводит к образованию сесквитерпенов 15). Многие бициклические сесквитерпены обладают высокой токсичностью и являются важными факторами устойчивости растений. 4 молекулы изопрена составляют дитерпены 20) — основные компо­ненты смол древесных растений. Многие дитерпены горькие на вкус (нап­ример, горький фактор огурца).

6 молекул изопрена составляют основу большой группы тритерпенов (C30). К ним относятся пентациклические тритерпеноиды (5 шестичленных циклов) и стероиды, ядро которых состоит из трех шестичленных циклов и одного пятичленного. Фитостерины  — необходимый компонент растительных мембран, а эргостерин — мембран многих грибов. Токсич­ность многих тритерпеноидов обусловлена их способностью связываться со стеринами мембран; в результате чего образуются поры в мембранах, и происходит потеря клеточного содержимого в окружающую среду (ли­зис).

Наконец соединение восьми молекул изопрена дает многочисленный класс тетратерпеноидов 40). Их линейные молекулы  образуют большую группу растительных пигментов каротиноидов, которые ок­рашивают цветки, плоды, корнеплоды, осенние листья растений.

Белки, аминокислоты. Факторами устойчивости растений к патогенам могут быть семейства низкомолекулярных, основных, богатых цистеином белков, включающих растительные дефензины, белки, осуществляющие трансмембранный транспорт липидов, белки, подавляющие синтез бел­ка чужеродными рибосомами на стадии элонгациии, и тионины, накап­ливающиеся в семенах и проростках многих растений. Их антимикробное действие продемонстрировано многими опытами. Они обнаружены в се­менах, листьях, цветках и клубнях. Большинство этих белков накапливаются в клеточных стенках или даже на поверхности семян, осуществляя функции первой линии обороны.

В семенах некоторых бобовых обнаружена необычная аминокислота l-канаванин, содержание которой может достигать 2—3% сухого веса се­мян. Будучи антиметаболитом аргинина, она высокотоксичная и защищает семена от повреждения грибами и насекомыми.

Стратегия устойчивости. Растения обладают не только химическим разнообразием защитных соединений, но и разнообразными стратегиями их применения. Используя военную терминологию, можно сказать, что растения имеют глубоко эше­лонированную оборону с гибким управлением, способным создавать в нужном месте и в нужное время разнообразные защитные барьеры на пу­ти продвижения паразита.

Антимикробные вещества растительных покровов. Многие органы растений, — клубни, луковицы, стволы древесных пород покрыты слоем мертвых клеток. Отмирание клеток, как и их механическое повреждение, приводит к разрушению внутриклеточных мембран и совмещению хими­ческих соединений, разобщенных в живой клетке мембранам. В результате этого протекают химические реакции и накапливаются высокотоксичные соединения. Их накопление в живых клетках могло бы привести к повреж­дениям последних, но в мертвых — они играют роль химического барьера на пути движения паразитов. Например, желтая окраска чешуи лука обус­ловлена находящимся в вакуолях флавоновым пигментом кверцитрином, который представляет собой сложный фенол квертецин, соединенный гликозидной связью с моносахаридом рамнозой. В отмирающих кроющих чешуях луковицы вследствие разрушения вакуолей происходит серия химических реакций: сначала фермент глюкозидаза отщепляет сахарный остаток, затем фенолоксидазы расщепляют квертецин до низкомолеку­лярных водорастворимых монофенолов — протокатеховой кислоты и о-катехола, которые высоко токсичны для микроорганизмов.







Фенольный агликон лука квертицин и продукты его распада — протокатеховая кислота и о-катехол (слева направо).

Диффундируя на поверхность в инфекционную каплю, они убивают спо­ры фитопатогенных грибов. Поэтому окрашенные сорта лука устойчивы к грибам, вызывающим гнили луковиц. Луковицы с поврежденными кроющими чешуями поражаются независимо от наличия окраски, ибо в живых клетках простые фенолы не накапливаются.

В мертвых клетках коры многих деревьев присутствует токсичный для микроорганизмов дифенол пиносильвин, в клетках коры ильмов — фактор устойчивости к голландской болезни сесквитерпен мазонон.

Пиносильвин

Антимикробные вещества живых клеток. Большинство токсических веществ находится в живых клетках в форме гликозидов, которые, во-первых, менее токсичных, чем их агликоны и, поэтому не опасны для клеточного метаболизма, и, во-вторых, водорастворимы и поэтому являются транс­портной формой токсинов. Обычно они находятся в вакуолях и отделены тонопластом от других компонентов клетки, что также защищает ее от пов­реждающего действия. При повреждении клеточных мембран содержимое вакуолей выливается в клетку и гликозиды входят в контакт с ферментами гликозидазами, находящимися в других мембранных пузырьках лизосомах, или ковалентно связанными с компонентами клеточной стенки. В результате химических реакций освобождаются высоко токсичные агликоны, убива­ющие клетку и находящихся в ней паразитов. Такова генеральная стратегия защиты от заражения и иных стрессов. Частный случай такой защиты — рассмотренное освобождение агликонов в естественно отмирающих кроющих клетках.

Классифкация гликозидов основывается на химическом строении агли­конов.

Фенольные гликозиды. Выше рассмотрены реакции превращения фенольного гликозида кверцитрина в кроющих чешуях окрашенных луковиц. У раз­личных видов злаков (ржи, пшеницы, кукурузы) содержится семейство глюкозидов бензоксазинов, агликон которых содержит наряду с фенолом азот­содержащий цикл. В поврежденных клетках освобождаются агликоны бензоксазолиноны, токсичные для ржавчинных грибов, возбудителей снежной плесени, тлей и других насекомых. По-видимому, эти соединения являются важным фактором неспецифической устойчивости. Например, корреляция между их содержанием в листьях инбредных линий кукурузы и поражаемостью этих линий листовой тлей составила -0,72.

Цианогенные гликозиды. Многие растения (сорго, лядвенец, просо, лен и др.) содержат цианогенные гликозиды (дурринин, линамарин, лотаустролин), которые образуются в процессе прорастания семян из аминокислот (тирозина и др.). Ферменты, осуществляющие поэтапное превращение аминокислоты в цианогенный глюкозид, находятся на внутриклеточных мембранах в виде комплекса, эффективно канализующего поток углерода из l-тирозина в гликозид.

Гликозиды алифатических соединений. В луковицах тюльпанов накап­ливается гликозид тюлипозид, который после отщепления сахара замыкается в лактонный цикл, очень токсичный вследствие высокой реакционной способности (связывается по месту двойной связи с SH-группами белков). Реакция образования лактона — важный фактор устойчивости тюльпанов к Botrytis cinerea.

Терпеноидные гликозиды и гликоалкалоиды. Тритерпеноиды и стеро­иды образуют с сахарами гликозиды, мылящиеся в воде, и названные сапо­нинами (от латинского sapo — мыло). У большинства сапонинов олигосахаридная цепь прикреплена к терпеноидному ядру в положении С-3, хотя у многих имеется дополнительная связь с глюкозой в положениях С-26 или С-28. Сапонины очень ядовиты, так как связываются со стеринами в мем­бранах. Накапливающийся в ко­решках овса тритерпеноидный гликозид авенацин является  фактором устойчивости к корневой гнили, вызываемой грибом Gaeumannomyces graminis. Стероидные гликозиды пасленовых имеют в своем сос­таве азотсодержащий гетероцикл и названы гликоалкалоидами. Синтез гликоалкалоидов картофеля соланина и чаконина  индуцируется освещением, поэтому они накапливаются в листьях, ягодах (обусловлива­ют их горький вкус) и озелененных на свету клубнях, которые становятся ядовитыми, но хорошо хранятся, не повреждаясь гнилями. Соланин и чаконин подавляют рост фитопатогенных грибов in vitro и является фактором возрастной устойчивости картофеля.

Гликоалкалоид томатов томатин  накапливается в вакуолях листьев и зеленых плодов томатов. Он высоко токсичен для Cladospohum fulvum и других грибов (вызывает потерю электролитов через мембраны). Гликоалкалоид дикого картофеля Solarium demissum демиссин является репелентом для колорадского жука.

Тиогликозиды. До сих пор рассматривались соединения, связь которых с сахаром осуществлялась через кислород. У растений из семейств капустных и каперцовые накапливаются соединения, агликон которых связан с сахаром через атом серы. Их называют горчичными маслами, тиогликозидами или гликозинолатами. Депо гликозинолатов — вакуоль.

Обратите внимание на лекцию "Псороптоз овец".

При повреждении тонопласта они приходят в контакт с специфическими ферментами, которые отщепляют сахар. В результате образуется продукт, содержащий изородановую группу R-N=C=S —летучее, высокотоксичное соединение, действующее на сли­зистые оболочки и имеющее высокий антимикробный эффект. Его сле­зоточивое действие ощущается, например, при натирании корня хрена.

Резюмируя сказанное, видно, что система клеточной защиты, основан­ной на освобождении токсических веществ из гликозидов, высокоэффек­тивна и универсальна. Однако многие фитопатогенные организмы в про­цессе коэволюции с растенями выработали механизмы, нейтрализующие эту систему.

Такие механизмы можно свести к следующим:

1. Мягкое, не повреждающее мембраны воздействие на клетки растений.

2. Изменение чувствительного к токсину сайта. У гриба Stemphilium loti, вызывающего пятнистость листьев цианогенного лядвенца, высокий вклад в дыхание приходится на альтернативный, нечувствительный к цианиду путь.

3. Модификация токсических веществ до менее токсичных. Этот меха­низм патогенности широко распространен в мире фитопатогенов.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5137
Авторов
на СтудИзбе
440
Средний доход
с одного платного файла
Обучение Подробнее