Популярные услуги

Курсовой проект по деталям машин под ключ
Все лабораторные под ключ! КМ-1. Комбинационные логические схемы + КМ-2. Комбинационные функциональные узлы и устройства + КМ-3. Проектирование схем
ДЗ по ТММ в бауманке
КМ-3. Типовое задание к теме прямые измерения. Контрольная работа (ИЗ1) - любой вариант!
Любая лабораторная в течение 3 суток! КМ-1. Комбинационные логические схемы / КМ-2. Комбинационные функциональные узлы и устройства / КМ-3. Проектирование схем
КМ-2. Выпрямители. Письменная работа (Электроника семинары)
Допуски и посадки и Сборочная размерная цепь + Подетальная размерная цепь
КМ-3. Задание по Matlab/Scilab. Контрольная работа - любой вариант за 3 суток!
ДЗ по матведу любого варианта за 7 суток
Задача по гидравлике/МЖГ
Главная » Лекции » Инженерия » Системы телекоммуникационные » Аппаратура радиорелейных линий прямой видимости с частотным разделением каналов и частотной модуляцией

Аппаратура радиорелейных линий прямой видимости с частотным разделением каналов и частотной модуляцией

2021-03-09СтудИзба

1.3 Аппаратура радиорелейных линий прямой видимости с частотным разделением каналов и частотной модуляцией        (ЧРК-ЧМ)

Приемопередающая аппаратура радиосвязи. Широкое использование в аппаратуре РРЛ получили гетеродинные приемопередатчики, которые построены на основе передатчика с преобразователем частоты и супергетеродинного приемника.

Упрощенная схема оконечной приемопередающей станции приведена на рисунке 1.3.1.

Как следует из рисунка 1.2.2 и рисунка 1.3.1 групповой сигнал (ГС) от многоканальных систем передачи поступает на устройство объединения групповых сигналов (УОГС), представляющих собой волну фильтров. В этом устройстве могут объединяться ГС, расположенные в непересекающихся областях частот.

Рисунок 1.3.1 – Упрощенная структурная схема приемопередающего оборудования.

Далее сигнал усиливается в усилителе групповых сигналов (УГС), ограничивается по амплитуде в усилителе-ограничителе (АО) и подается на предыскажающий  контур (ПК). Предыскажения вводятся с целью выравнивания отношения Pcш по всему спектру ГС. В частотном модуляторе (ЧМ) производится модуляция промежуточной частоты (Fпч обычно выбирается равной 70 МГц) групповым сигналом.

Полосу частот ВЧ тракта (Пчм), необходимую для пропускания ЧМ сигнала можно определить по формуле Карсона:

                                                             ,                                         (1.3.1)

где fв – верхняя частота модулирующего сигнала.

Рекомендуемые материалы

Эффективная девиация частоты на выходе модулятора, которая получается при подаче на вход любого телефонного канала измерительного синусоидального сигнала (с частотой 800 Гц) мощностью 1 мВт (нулевой уровень) называется эффективной девиацией на канал – Δfк. Согласно рекомендациям МККР (ныне МСЭ) в современных многоканальных РРС в зависимости от числа каналов N используют ∆fк, равные 200, 140 или 100 кГц. Обычно в процессе настройки аппаратуры величина ∆fк выставляется при подаче на вход предыскажающего контура (ПК) вместо Uгр(t), измерительного сигнала с частотой, на которой предыскажения в ПК отсутствуют. Поэтому ∆fк называют эффективным значением девиации, создаваемой измерительным уровнем сигнала одного канала ТЧ на частоте нулевых предыскажений.

                                                                 ,                                             (1.3.2)

где Кчм – крутизна модуляционной характеристики; Ризм = 1 мВт – средняя мощность измерительного сигнала на сопротивлении R. Поскольку, если Uгр(t) и измерительный сигнал выделяются на одинаковых сопротивлениях R, , то

                                                                    ,                                                (1.3.3)

где ∆fэ и ∆fк измеряются в кГц, а Рср – безразмерная величина, численно равная Рср в мВт. Если выходное сопротивление измерительного генератора активно и совпадает с входным сопротивлением канала (600 Ом), то соотношение Рср/ Ризм в дБ соответствует уровню

                                        ,                         (1.3.4)

откуда   . Поэтому вместо (1.3.3) можно записать

                                                                    .                                           (1.3.5)

При N > 240, когда рср = -15 + 10 lg(N), дБ, в соответствии с (1.3.5) получаем  или

                                                                 ,                                         (1.3.6)

В современных РРС с N=600 величины ∆fк=200 кГц; при N = 1920 ∆fк 140 кГц.

Частотная модуляция (ЧМ) позволяет обеспечить относительно высокую помехоустойчивость передачи сообщений. При этом не требуется большая стабильность частоты передатчика. Мощность его используется весьма эффективно: она практически не зависит от характеристик сообщений на входе модулятора, пик-фактор всегда равен единице. Уровень сигнала на входе приемника может изменяться в достаточно широких пределах (на пример, при замираниях), не влияя на мощность полезного сигнала после демодулятора. Все это в целом объясняет широкое применение ЧМ на РРЛ, в спутниковых, тропосферных и других системах передачи. Вместе с тем частотной модуляцией свойственны и определенные недостатки: резкое снижение качества передачи, если отношение средних мощностей сигнала и шума на входе приемника (Рсш)вх падает ниже некоторого порогового значения (пороговый эффект проявляется обычно при (Рсш)вх ≤ 10); широкий спектр частот, который необходимо передавать по радиоканалу для нормального восстановления сообщений на выходе демодулятора; зависимость уровня шумов на выходе канала от мощности входного сигнала приемника (проявляется при замираниях); необходимость выравнивания качества работы разных телефонных каналов при их частотном разделении и другие.

При ЧМ нужен не просто широкополосный высокочастотный тракт, а тракт, амплитудно-частотная характеристика (АЧХ) и характеристика группового времени запаздывания (ГВЗ) которого удовлетворяют весьма высоким требованиям. В противном случае сигнал на выходе демодулятора может недопустимо исказиться и, например, при многоканальной передаче сообщений методом ЧРК качество связи соответственно упадет за счет так называемых переходных помех: работе одного (любого) частотного канала будут в значительной мере мешать сигналы, спектр которых состоит из гармоник и комбинационных продуктов колебаний в других каналах.

В системах с ЧРК если не принять специальных мер, ЧМ не может обеспечит равные условия работы разных частотных каналов. Причем более высокочастотным сигналом, когда увеличивается Fв и уменьшается индекс mэ, соответствует меньшая помехоустойчивость. Увеличением мощности передатчика или группового сигнала Uгр(t) можно добиться необходимой помехоустойчивости и в верхнем частотном канале. Но при этом в средних и нижних каналах запас по мощности будет не оправданно высоким. В целом такой режим не выгоден как с экономической точки зрения, так и с точки зрения уменьшения внутри- и межсистемных помех. Поэтому, как отмечалось ранее, для выравнивания в различных каналах отношения сигнала к шуму прежде чем подать Uгр на модулятор, это напряжение подают на предыскажающий фильтр, модуль коэффициента передачи которого y(F) обеспечивает изменение уровней таким образом, что уровни передачи нижних каналов становятся меньше уровней передачи верхних частотных каналов. Если теперь с помощью усилителя (с равномерной частотной характеристикой) довести среднюю мощность модулирующего сигнала Рср до значения, определенного ранее для Uгр(t), то величина ∆fэ останется такой же, как и без предыскажения Uгр(t). При этом подбором y(F) можно сделать так, что уровни сигналов в верхних каналах нового модулирующего сигнала  станут больше, чем у сигнала Uгр(t), а уровни сигналов в нижних соответственно меньше.

В системах с ЧМ сигнал Uгр(t) всегда подвергается предыскажению, а на выходе ЧД включают так называемый восстанавливающий контур с характеристикой обратной y(F). Этот фильтр не изменяет отношения сигнал-шум в отдельных каналах, но позволяет сделать более равномерным распределение уровней полезных канальных сигналов.

Характеристики предыскажающих и восстанавливающего контуров рекомендованы МСЭ. В общем случае характеристика предыскажающего контура хорошо аппроксимируется выражением

                          ,           (1.3.7)

где 0 ≤ F ≤ F­в, а F­в – верхняя частота модулирующего сигнала. Характеристика восстанавливающего контура  приведена на рисунке 1.3.2.

Рисунок 1.3.2 – Зависимость квадрата модуля коэффициента передачи yвк от F/Fв

Основное усиление сигнала осуществляется в усилителях промежуточной частоты (УПЧ). Тракт промежуточной частоты, используется для создания высокой избирательности при малых расстройках относительно границ полосы пропускания.

Для элементов тракта промежуточной частоты характерны следующие параметры: малая неравномерность АЧХ, группового времени запаздывания и дифференциального усиления в полосе частот точной коррекции; высокая степень входов и выходов сигнала промежуточной частоты в приемопередающей аппаратуре.

Мощный усилитель промежуточной частоты (МУПЧ) усиливает сигнал по мощности, необходимой для нормальной работы смесителя передатчика (СМпер). Модулированный сигнал промежуточной частоты после усиления смешивается в смесителе с высокостабильным колебанием генератора несущей частоты fн. На выходе смесителя в ПФ выделяется сигнал с частотой передачи fпер. Затем мощность этого сигнала усиливается в усилителе СВЧ до требуемого значения. В радиосистемах малой мощности (менее 1 Вт) усилитель СВЧ может не устанавливаться. Приемник радиоствола (рисунок 1.3.1) состоит из малошумящего усилителя сигнала СВЧ, преобразователя частоты, в который входят смеситель приемника (СМпр) и гетеродин приемника, и усилителя сигнала промежуточной частоты.

Гетеродин приемника включает в себя генератор сдвига (Гздв) и смеситель сдвига (СМсдв), в котором частота fсдв смешивается с частотой несущей fн. Таким образом частота гетеродина приемника (fгет) отличается от частоты fн на ± fсдв, чем обеспечивается разнос частоты приема и передачи. Обычно fсдв выбирается равной 213 МГц. На выходе смесителя приемника (СМпр) получается сигнал fпч ± ∆f, который через полосовой фильтр (ПФ) подается на главный усилитель ПЧ (УПЧ-1), в котором осуществляется основное усиление сигнала и автоматическая регулировка (АРУ). Таким образом уровень сигнала промежуточной частоты на выходе главного усилителя поддерживается постоянным в достаточно большом диапазоне изменений уровня принимаемого сигнала (в приемниках магистральных РРЛ достигает 46–50 дБ). Оконечный усилитель (УПЧ-2) имеет два выхода, один из которых используется для подачи сигнала на вход передатчика (ретрансляция сигнала на ПРС), второй – для выделения сигнала промежуточной частоты на УРС. В РРЛ с частотным уплотнением и ЧМ, обычно устанавливается усилитель-ограничитель, который подавляет паразитную АМ. При работе станции в режиме ретрансляции сигнал с выхода УПЧ-1 приемника поступает на вход МУПЧ передатчика. На оконечных (ОРС) и узловых (УРС) станциях, где осуществляется преобразование спектра сигнала до группового (ГС), сигнал ПЧ подается на вход УПЧ-2 и после ограничения по амплитуде в АО поступает на частотный детектор (ЧД). ГС с выхода ЧД после коррекции АЧХ в выравнивающем контуре (ВК) и усиления в УГС подается на вилку фильтров ДК устройства разделения групповых сигналов (УРГС).

Особенности трактов промежуточной частоты цифровых РРЛ заключаются в разных требованиях к полосам пропускания и точной коррекции частотных характеристик тракта, а также в повышенном требовании к линейности амплитудной характеристики активных элементов этого тракта.

Нелинейные элементы тракта промежуточной частоты, такие как амплитудные ограничители, приводят к дополнительной потере помехоустойчивости цифровых РРЛ с квадратурной АМ. Поэтому в приемопередатчиках цифровых РРЛ АО не используются.

Нормирование качества связи на РРЛ. Радиорелейные линии широко используются как в региональных системах, так и для международной связи. Уровень шума на выходе канала существенно зависит как от условий распространения радиоволн и протяженности линии, так и от ее структуры, в частности от числа преобразований сигнала с выделением той или иной группы каналов. Поэтому, решая задачу нормирования уровня шумов на выходе каналов, необходимо ориентироваться на некоторую конкретную по протяженности и структуре РРЛ, в которой учитывался бы опыт разработки аппаратуры РРС, проектирования и эксплуатации РРЛ. Роль таких РРЛ стали играть специально разработанные гипотетические (предполагаемые) эталонные цепи. Структура этих цепей определяется, в частности, видом сообщений и способом их передачи.

На рисунке 1.3.3,а условно изображена гипотетическая эталонная цепь, предназначенная для РРЛ с ЧРК, на которых число каналов ТЧ больше 60. Указанная цепь имеет протяженность 2500 км и состоит из 9 однородных секций. Структура цепи фиксируется порядком размещения вдоль линии индивидуальных преобразователей частоты, первичных и вторичных преобразователей. Как видно из рисунка 1.3.3,а, на указанных РРЛ допускается лишь (не считая ОРС) две станции с выделением (вводом) индивидуальных каналов и пять станций с выделением (вводом) 12-канальных (первичных) групп. Внутри секции число ПРС, на которых имеет место только ретрансляция сигнала и нет выделения каналов ТЧ или стандартных групп каналов, не регламентируется.

Рисунок 1.3.3 – Структура гипотетических цепей МСЭ (МККР) для РРЛ с ЧРК: а) с числом ТФК более 60; б) с каналами телевидения и вещания; в) цепь ЕАСС для магистральной РРЛ.

На рисунке 1.3.3,б представлена гипотетическая эталонная цепь для РРЛ с каналами телевидения и звукового вещания. Эта цепь состоит из трёх участков переприёма соответственно по видео- или низким частотам, то есть содержит три модулятора и три демодулятора.

Протяженность некоторых магистральных РРЛ в РФ значительно превосходит 2500 км. Поэтому для взаимоувязанной сети связи (ВСС) пришлось разработать ряд новых гипотетических цепей. Так, на магистральной сети в качестве гипотетической эталонной РРЛ принята цепь протяженностью 12500 км. Она состоит из 5 участков по 2500 км (рисунок 1.3.3,в), которые соединены между собой по тональной частоте или видеоспектру. В случае организации каналов ТЧ принято, что каждый однородный участок такой номинальной цепи состоит из 10 секций протяженностью 250 км. При этом внутри участка не предусмотрены индивидуальные преобразователи, а каждая секция начинается и кончается преобразователем третичной группы.

Для каждого конкретного вида эталонной цепи можно определить допустимое значение мощности шума или отношения сигнал-шум на выходе канала. Но вследствие замираний шумы на выходе каналов РРЛ являются нестационарными случайными процессами. Поэтому для шумов в ТФ, ТВ и других каналах РРЛ вводится несколько норм, полученных на основе обработки соответствующих статистических данных, учета специфики аппаратуры и особенностей получателя сообщений.

Рисунок 1.3.4 иллюстрирует рекомендации, установленные МККР (МСЭ) для телефонных и телевизионных каналов РРЛ. Так, согласно этим рекомендациям принято, что в любом телефонном канале в точке с нулевым относительным уровнем допустимые мощности шума (Рш.доп), вносимого радиорелейным оборудованием линии, имеющей протяженность 2500 км и структуру, соответствующую гипотетической эталонной цепи, составляют следующие величины (смотри рисунок 1.3.4,а): среднеминутная псофометрическая мощность шума, которая может превышаться в течение не более Т = 20% времени любого месяца, 7500 пВт0, что соответствует 10lg(7500/109) = –51,25 дБ; среднеминутная псофометрическая мощность шума, которая может превышаться в течение не более Т = 0.1% времени любого месяца, 47500 пВт0 (–43.23 дБ); средняя за 5 мс невзвешенная мощность шума, которая может превышаться в течение не более Т = 0.01% времени любого месяца, 106 пВт0 (–30 дБ). В рекомендацию, относящуюся к 20% времени, включена и мощность помех (1000 пВт), обусловленных работой спутниковых систем в общих с РРЛ полосах частот.

Рисунок 1.3.4 – Нормирование мощности шумов и отношения сигнал-шум на выходе телефонных (а) и телевизионных (б) каналов

Если структура РРЛ протяженностью l км значительно отличается от эталонной, то допустимая среднеминутная псофометрическая мощность шума (Рш.доп) в телефонном канале, которая может превышаться в течение не более 20% времени любого месяца, составляет величины: Рш.доп = (3l + 200) пВт0, если 50 ≤ l ≤ 840 км; Рш.доп = (3l + 400) пВт0, если 840 ≤ l ≤ 1670 км; Рш.доп = (3l + 600) пВт0, если 1670 ≤ l ≤ 2500 км.

Рекомендация для Вас - 23 Разработка технологического процесса восстановления деталей пластической деформацией.

Для видеоканалов нормируется отношение размаха сигнала изображения к визометрическому напряжению шума (Uр/Uш). На выходе гипотетической цепи протяженностью 2500 км это отношение (рисунок 1.3.4,б) может быть менее 61 дБ, 57 дБ и 49 дБ в течение соответственно не более 20, 1 и 0.1% времени любого месяца (при использовании унифицированного взвешивающего фильтра допускается уменьшение защищенности ТВ каналов на 4 дБ и, в частности, приведенные рекомендации на Up/Uш, относящиеся к 20 и 0.1% времени любого месяца снижаются до 57 и 45 дБ соответственно). При этом учитываются помехи от всех источников, влияющих на качество работы данного канала. Поскольку случайные процессы, представляющие все помехи на РРЛ, как внутренние, так и внешние, практически во всех случаях могут считаться независимыми, мощность помех на выходе канала (Рп.вых) обычно находится суммированием мощности помех отдельных источников. Так, для линии протяженностью 2500 км, псофометрическая мощность помех в канале ТЧ может превышать 7500 пВт в течение не более 20% времени любого месяца, связывают с выполнением следующего условия с учетом помех от ИСЗ будет равна:

,       (1.3.8)

где Рп.г – мощность переходных помех, вносимых одним комплектом оборудования, с помощью которого осуществляется переприем по групповому спектру; m – число узловых станций на которых осуществляется переприем по групповому спектру (две ОРС приравниваются одной УРС); n – число пролетов на линии; Рп.вч i – суммарная мощность переходных помех, обусловленных неидеальностью характеристик элементов ВЧ тракта на i-м пролете; Рт i (20%) – мощность (превышаемая в течение не более 20% времени любого месяца) теплового шума, вносимого на i-м пролете; Рп.м i (20%) – мощность переходных помех, обусловленная мешающим действием радиопомех на i-м пролете; третье и четвертое слагаемые в (4.6.2) содержат величины зависящие от времени (в третье слагаемое кроме тепловых шумов, мощность которых зависит от изменения мощности сигнала на входе приемника, вызванных замираниями, входят также и постоянные по мощности компоненты теплового шума Рт.г и Рт.м).

Тепловые шумы, учитываемые при оценке качества работы телевизионных каналов, как и в каналах ТЧ, складываются по мощности. Если, например, в расчет принимать мощность шумов, превышаемую в течение не более 20% времени любого месяца, то

                          ,          (1.3.9)

где Uт (20%) – эффективное визометрическое напряжение теплового шума на выходе видеоканала, превышаемое в течение не более 20% времени любого месяца; Uр – напряжение размаха сигнала изображения; Uт.м и Uт.г – эффективное визометрическое напряжение теплового шума, вносимого соответственно одним модемом (м) и одним гетеродинным трактом; обычно Uт.м = 0.14…0.22 мВ, а Uт.г = 0.06…0.14 мВ; Uт i (20%) – эффективное визометрическое напряжение (превышаемое в течение не более 20% времени любого месяца) теплового шума, вносимого на i-м пролете.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5184
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее