Последовательные процедуры с зависимыми решениями
7.4. Последовательные процедуры с зависимыми решениями.
Причина низкой эффективности последовательной процедуры с независимыми решениями состоит в том, что время, затрачиваемое на завершение эксперимента в тех каналах, где он затянулся, не используется для уточнения решений, принятых в остальных каналах. Более эффективны алгоритмы, в которых решение о прекращении наблюдения в каждом канале выносится на основании анализа совокупности значений решающей статистики во всех каналах. При этом становится возможным возврат статистики, пересекшей в каком либо канале порог, в зону неопределенности и последующий повторный выход статистики за порог, поэтому итоговая вероятность ошибок в таких процедурах ниже, чем при независимых решениях. Процедуры рассматриваемого типа иногда называют “процедурами с многократными пересечениями порогов”; примерами могут служить процедура на экстремальной статистике, а также процедура с одновременным решением.
Процедура на экстремальной статистике применима в тех случаях, когда гипотеза предполагает наличие единственного сигнала в каком-либо канале. Согласно этой процедуре, накопление парциальной решающей статистики во всех каналах продолжается до тех пор, пока максимальное из этих значений
не пересечет один из решающих порогов. При пересечении верхнего порога принимается решение о наличии сигнала в том канале, где получено значение
, нижнего – об отсутствии сигналов во всех каналах. Очевидно, что пока экстремальная статистика находится в зоне неопределенности, пересечение нижнего порога в любом другом канале не может привести к принятию гипотезы
, как следствие, снижается вероятность пропуска. Поэтому, для обеспечения заданной вероятности пропускав данной процедуре необходима меньшая ширина зоны неопределенности, соответственно, и меньшая средняя длительность наблюдения, чем для процедуры с независимыми решениями. Однако расчет оптимального нижнего порога, обеспечивающего в данной процедуре требуемую вероятность пропуска, оказывается достаточно сложным, что наряду с невозможностью обнаружения более чем одного сигнала снижает ее практическую ценность.
Развитием рассмотренной процедуры на случай обнаружения произвольного числа сигналов является процедура, согласно которой накопление статистики в каждом канале продолжается до шага, на котором статистика во всех каналах одновременно окажется вне зоны неопределенности, (отсюда название – “процедура с одновременным решением”). Очевидно, что условие выхода за нижний порог всех парциальных статистик тождественно условию выхода за этот порог максимальной из них, т.е. с точки зрения принятия гипотезы
процедуры на экстремальной статистики с одновременным решением эквивалентны. Различие состоит в том, что в последнем случае возможен возврат в зону неопределенности статистики, пересекшей не только нижний, но и верхний порог, что снижает вероятность ложной тревоги, и позволяет при заданных значениях вероятностей ошибок, дополнительно уменьшить размер зоны неопределенности и среднюю длительность последовательной процедуры. Однако расчет оптимальных значений решающих порогов при этом еще более усложняется.