Популярные услуги

Курсовой проект по деталям машин под ключ
ДЗ по ТММ в бауманке
Все лабораторные под ключ! КМ-1. Комбинационные логические схемы + КМ-2. Комбинационные функциональные узлы и устройства + КМ-3. Проектирование схем
КМ-3. Типовое задание к теме прямые измерения. Контрольная работа (ИЗ1) - любой вариант!
Любая лабораторная в течение 3 суток! КМ-1. Комбинационные логические схемы / КМ-2. Комбинационные функциональные узлы и устройства / КМ-3. Проектирование схем
КМ-2. Выпрямители. Письменная работа (Электроника семинары)
Допуски и посадки и Сборочная размерная цепь + Подетальная размерная цепь
ДЗ по матведу любого варианта за 7 суток
Курсовой проект по деталям машин под ключ в бауманке
Задача по гидравлике/МЖГ
Главная » Лекции » Инженерия » Автоматизированный электропривод » Регулирование угловой скорости электропривода

Регулирование угловой скорости электропривода

2021-03-09СтудИзба

5. Регулирование угловой скорости электропривода

5.1. Определение понятия «регулирование»

            Непрерывное повышение требований к технологическим процессам (ТП) неизбежно влечет за собой повышение требований к электроприводу, который приводит в движение рабочие механизмы, участвующие в ТП. В большинстве ТП требуется регулирование потока мощности для обеспечения необходимого качества технологии. Сюда относятся металлообрабатывающие станки, прокатные станы, подъемные и транспортные механизмы, различные механизмы бумажной, угольной, текстильной промышленности. Так, в металлорежущих станках скорость электропривода должна регулироваться в зависимости от рода обрабатываемого металла, качества резца, размеров изделия. В прокатных станах для каждого профиля имеются свои наиболее благоприятные параметры работы привода.

            В лифтах регулирование скорости позволяет значительно повысить комфортность перемещения пассажиров. Скорость работы дымососов в котельной также определяется внешними параметрами (влажность, зольность, условия горения, требуемая производительность).

Регулированием скорости называется принудительное изменение скорости электропривода в зависимости от требований технологического процесса. Понятие регулирования скорости не следует смешивать с естественным изменением скорости, возникающим в электроприводах в силу изменения нагрузки на валу работающей машины. Регулирование скорости осуществляется дополнительным воздействием на приводной двигатель.

Наиболее эффективным с точки зрения затрат и возможностей является электрическое регулирование, которое сегодня доминирует над другими типами регулирования потока мощности к рабочему органу исполнительного механизма.

Кроме регулирования скорости от электропривода в общем случае также требуется обеспечить регулирование момента (тока) и положения. Задача регулирование координат электропривода решается при проектировании систем управления электроприводом (СУЭП).

Регулирование делят обычно на две группы: в разомкнутых системах и в замкнутых системах. Разомкнутые системы, как правило, не требуют датчиков обратных связей и сложных управляющих устройств (например, программируемые логические контроллеры). Недостатком разомкнутого регулирования является низкая точность поддержания регулируемой координаты, что часто не может обеспечить выполнение необходимых требований технологий производства.

Рекомендуемые материалы

В связи с непрерывным совершенствованием технологии и автоматизацией рабочих мест возрастают требования к точности и качеству регулирования. Поэтому область применения разомкнутых систем сужается, уступая место замкнутым системам регулирования. Введение обратных связей по координатам обеспечивает автоматическое регулирование координат, поэтому системы регулирования электропривода принято называть системами автоматического регулирования (САР). Иногда используется более широкий термин – системы автоматического управления (САУ).

В замкнутых системах различают два вида регулирования: по отклонению и по возмущению. Регулирование по возмущению предполагает компенсацию влияния возмущения на регулируемую координату с помощью положительной обратной связи. В электроприводе применяется первый тип регулирования – по отклонению. Использование положительных обратных связей часто приводит к возникновению явления неустойчивости, что делает систему неработоспособной, поэтому регулирование по возмущению в электроприводе не применяется.

Реализация регулирования требует введения в ЭМС дополнительных управляющих устройств. В разомкнутой системе вводятся контакторы, реле, резисторы, реакторы и п.т.

Для осуществления автоматического регулирования предусматриваются управляемые преобразователи и регуляторы, позволяющие автоматически под воздействием обратным связей изменять параметры системы. Наиболее широко используются электромашинные и вентильные управляемые преобразователи и соответствующие системы электропривода: система генератор – двигатель (Г-Д); система тиристорный (или транзисторный) преобразователь – двигатель (ТП-Д); система преобразователь частоты – асинхронный двигатель (ПЧ-АД).

5.2. Показатели качества регулирования угловой скорости электроприводов

            Для количественного определения предъявляемых к регулируемому электроприводу требований и для сопоставления между собой возможных способов регулирования используются обобщенные показатели регулирования. К их числу относятся точность регулирования, плавность, стабильность скорости, допустимая нагрузка при различных скоростях, динамические показатели качества и экономичность регулирования.

           

5.2.1. Точность регулирования

Точность регулирования переменной определяется возможными отклонениями её от заданного значения под действием возмущающих факторов (изменений нагрузки, колебания напряжения мети и др.). При регулировании в разомкнутой системе может быть принято среднее значение координаты при известных пределах изменения всех возмущающих воздействий. При этом оценкой точности регулирования может служить отношение наибольшего отклонения  к среднему значению

,

где и – максимальное и минимальное значение переменной при данных значениях параметра или задающего сигнала и пределов изменения возмущений.

            Количественная оценка точности регулирования в замкнутых системах обычно выполняется иначе. Если по условиям работы электропривода важна точность воспроизведения значений регулируемой координаты, задаваемой на входе САР, требования к точности определяются допустимой ошибкой регулирования , абсолютное значение которой при единичной обратной связи можно записать так:

 ,

где  – задающий сигнал,  – текущие значения регулируемой координаты. При необходимости ошибку регулирования можно представить в относительных единицах, поделив на .

Описание: Фрагмент43

Описание: Фрагмент45

Рис. 5.1. К определению понятия

точности регулирования

Рис. 5.2. К определению понятия

диапазона регулирования

5.2.2. Диапазон регулирования

            Диапазон регулирования угловой скорости определяется отношением возможных установившихся скоростей: максимальной  к минимальной

.

При заданной точности регулирования для установленных пределов изменения момента нагрузки и других возмущений. Диапазон регулирования скорости в разомкнутых системах обычно составляет 10:1, 20:1. Использование замкнутых систем регулирования позволяет получать  до 30000:1.

            Различные производственные механизмы требуют различных диапазонов регулирования. Например, главные привода металлорежущих станков в зависимости от назначения работают в с диапазонами , для механизмов подач универсальных металлорежущих станков требуется диапазон до 10000:1. Для прокатных станов средний диапазон регулирования скорости составляет 25:1.

           

5.2.3. Плавность регулирования

            Плавность регулирования характеризует скачок скорости при переходе от данной скорости к ближайшей возможной. Плавность тем выше, чем меньше этот скачек. Её можно оценить коэффициентом плавности регулирования, который определяется как отношение двух соседних значений угловых скоростей при регулировании

,

где  и  соответственно угловые скорости на i-той и (i-1) ступенях регулирования.

            При плавном регулировании . Плавность регулирования во многих случаях определяет качество продукции. Высокая плавность регулирования достигается сегодня при использовании полупроводниковых преобразователей для ДПТ и АД.

           

5.2.4. Экономичность регулирования

Экономичность регулирования характеризуется затратами на сооружение и эксплуатацию электропривода. Применение регулируемого электропривода связано с дополнительными первоначальными затратами и эксплуатационными расходами, которые должны окупаться повышением производительности и надежности работы установки, а также улучшением качества продукции. При сравнении различных способов регулирования ориентировочное суждение о затратах можно составить, оценивая массогабаритные показатели дополнительного оборудования, а эксплуатационные затраты по энергии – КПД, характеризующим потери энергии

,

где  – мощность, потребляемая из сети;  – мощность на валу двигателя

 и значением , характеризующим потребление активной мощности при регулировании.

            Для регулируемых электроприводов с вентильными преобразователями, которые вносят искажения в форму потребляемого из сети тока, важным энергетическим показателем служит коэффициент мощности:

,

где  – угол сдвига по фазе между первой гармоникой потребляемого тока и напряжением сети;  – коэффициент искажений, характеризующий отношение эффективного значения первой гармоники тока к эффективному значению реальной кривой потребляемого тока, содержащей высшие гармоники.

            Для современных регулируемых приводов наиболее характерные значения указанных показателей следующие: . Часто для достижения наилучших значений указанных показателей применяют специальные устройства, такие как фильтры, регулирование тока возбуждения синхронной машины, оптимизация частоты переключения вентилей, использование полупроводниковых приборов с низкими потерями на переключение.

            5.2.5. Стабильность угловой скорости

Данный критерий характеризуется изменением угловой скорости при заданном отклонении момента нагрузки и тесно связан с понятием жесткости механической характеристики. Чем больше жесткость механической характеристики двигателя, тем выше стабильность скорости электропривода. Самой высокой стабильностью обладают синхронные двигатели, так как у них жесткость МХ .

           

5.2.6. Направление регулирования скорости

Показатель определяет возможность уменьшение или увеличение её по отношению к номинальному значению зависит от способов регулирования. Для приводов постоянного тока различают одно- и двухзонное регулирование.

В первом случае регулирование осуществляется при постоянстве магнитного потока путем изменения напряжения на якоре вниз от номинального значения. Такое регулирование называют регулированием с постоянством момента ().

Для перевода привода во вторую зону уменьшают магнитный поток двигателя (изменяют напряжение на обмотке возбуждения ниже номинального), при этом уменьшается перегрузочная способность двигателя по моменту () и увеличивается скорость. Такое регулирование называют регулированием с постоянством мощности ().

Характеристики двух зон регулирования ДПТ с НВ представлены на рис. 5.3.

Описание: Фрагмент45

Описание: Фрагмент46

Рис. 5.3. Характеристики двух зон

 регулирования ДПТ с НВ

Рис. 5.4. Динамические показатели

 качества регулирования

            5.2.6. Допустимая нагрузка двигателя

Под указанным показателем понимают наибольшее значение момента, который двигатель способен длительно развивать при работе на регулировочных характеристиках. Определяется нагревом двигателя и различается в зависимости от способа регулирования. Изменение статического момента от скорости в зависимости от механизма может быть различным. Принципиально путем выбора соответствующей мощности двигателя можно удовлетворить любому изменению нагрузочного момента или мощности при регулировании скорости. Однако часто оказывается, что регулирование является неэкономичным, и двигатель при разных скоростях может оказаться недогруженным.

            Недогрузка двигателя ведет к ухудшению эксплуатационных показателей привода, так как при этом уменьшается КПД двигателя, а для АД падает также значение коэффициента мощности. Желательно поэтому применять такой способ регулирования, при котором двигатель был бы по возможности полностью загружен при всех угловых скоростях.

            Допустимая нагрузка определяется степенью нагрева двигателя, которая в свою очередь зависит от потерь в двигателе и условий охлаждения двигателя. Таким образом, можно заключить, что для полной загрузки двигателя необходимо, чтобы ток двигателя во всех режимах работы был близок к номинальному. Для того чтобы условия охлаждения двигателя не ухудшались в регулируемых приводах используют двигатели с принудительной вентиляцией. Конструкция таких двигателей содержит дополнительный отдельный двигатель вентилятора, который вращается с постоянной частотой, не зависимо от частоты вращения вала двигателя.

           

5.2.7. Показатели качества регулирования в динамических режимах работы электропривода

Динамические качества электропривода во многих случаях определяют производительность установки, износ механического оборудования, качество выпускаемой продукции. Поэтому качество переходных процессов имеет серьёзное значение. Качество переходного процесса можно оценить быстродействием, величиной перерегулирования и колебательностью процесса.

            Быстродействие определяет быстроту реакции электропривода на изменения воздействий. Главным показателем быстродействия, непосредственно влияющим на производительность механизмов, является время переходного процесса или время регулирования. В автоматических системах регулирования быстродействие характеризуют показателями переходного процесса при отработке единичного скачкообразного управляющего воздействия. Обычно под временем регулирования понимают время, которое требуется привода для того, чтобы отклонение регулируемой координаты не превышало 5% от заданного значения.

            Перерегулирование представляет собой динамическую ошибку и характеризуется максимальным отклонением  от установившегося значения . Как правило, перерегулирование  выражают в относительных единицах или процентах:

.

Колебательность электропривода является фактором, влияющим на точность, динамические нагрузки и качество технологического процесса. Её общим показателем служит значение логарифмического декремента затухания

,

где  - величина амплитуд первого и следующего за ним максимума.

            На рис. 5.4. представлен вид переходного процесса и указаны величина быстродействия  и перерегулирование .

5.3. Регулирование скорости двигателя постоянного тока с независимым возбуждением

           

5.3.1. Преобразовательные устройства, применяемые при регулировании скорости двигателей

Как было рассмотрено выше, регулирование скорости возможно различными способами: изменением напряжения на якоре двигателя, изменением сопротивления в цепи якоря, изменением напряжения на обмотке возбуждения двигателя. Реостатное регулирование является не экономичным и по возможности используются другие, более экономичные способы регулирования скорости.

            Регулирование скорости возможно при использовании преобразовательных устройств, которые позволяют изменять параметры энергии на своем выходе. Например, преобразователи для ДПТ позволяют менять значение напряжения на выходе, преобразователи для АД, кроме того, могут изменять частоту выходного напряжения. Первоначально в качестве управляемых преобразователей (управляемых выпрямителей для ДПТ) применяли электромашинные преобразователи. Такой преобразователь состоит из механически соединённых друг с другом АД и генератора постоянного тока независимого возбуждения. В настоящее время в связи с бурным развитием полупроводниковой техники ЭМП не используются ввиду экономической нецелесообразности.

            Полупроводниковые преобразователи в настоящее время принято разделять на неуправляемые выпрямители (например, для питания обмотки возбуждения двигателя в однозонных САР), управляемые выпрямители, позволяющие изменять на выходе среднее значение напряжения; непосредственные преобразователи частоты, изменяющие частоту первой гармоники; частотные преобразователи, частота и напряжение на выходе которых меняется по какому-либо закону частотного управления.

5.3.2. Система генератор-двигатель

Рассмотрим основные свойства системы генератор-двигатель (Г-Д). Принципиальная схема системы Г-Д представлена на рис. 5.5. Она состоит из приводного двигателя Д (асинхронный или синхронный двигатель), который механически связан с генератором постоянного тока Г. Величина ЭДС генератора регулируется путем изменения напряжения на обмотке возбуждения генератора. Якоря генератора и двигателя электрически связаны друг с другом. Регулируемым параметром в данном случае выступает величина ЭДС двигателя. Для обеспечения магнитного потока в двигателе и генераторе используется возбудитель, который представляет собой ДПТ меньшей мощности . В настоящее время в качестве возбудителей используются полупроводниковые преобразователи.

Описание: Фрагмент47

Описание: Фрагмент48

Рис. 5.5. Принципиальная схема

системы Г-Д

Рис. 5.6. Механические характеристики системы Г-Д

            Из уравнения равновесия напряжений по второму закону Ома можно составить уравнение ЭДС

,

где  – ЭДС генератора,  – сопротивления якоря генератора.

Подставив в это уравнение значения ЭДС  и тока двигателя , можно найти уравнение механической характеристики системы Г-Д:

.

            Вид механических характеристик представлен на рис. 5.6. Анализируя полученное уравнение МХ для системы ГД, можно заключить, что относительное падение напряжения в этой системе в вдвое выше (прямая 2 на рис. 5.6), чем у естественной характеристики двигателя (прямая 1 на рис 5.6). Обуславливается это наличием сопротивления генератора, которое примерно равно сопротивлению якоря двигателя, так как машины примерно одинаковой мощности.

Основным достоинством данного способа регулирования является высокая плавность регулирования скорости двигателя.

К недостаткам можно отнести следующее: в системе Г-Д происходит двукратное преобразование энергии: в приводном двигателе из электрическую в механическую, в генераторе из механической в электрическую, а также непосредственно в самом двигателе из электрической в механическую. Так как каждое устройство обладает своим КПД, становится очевидно, что в данной системе общий КДП, равный произведению КПД всех входящих в систему преобразовательный устройств , не может иметь высокого значения.

Кроме того, при работе ЭМП возникает дополнительный шум, ухудшающий условия работы персонала, повышаются расходы на обслуживание, а сама система обладает повышенными массогабаритными показателями, так как мощность приводного двигателя и генератора должны быть немного больше мощности двигателя. Ввиду указанных недостатков в настоящее время данная система вытеснена более совершенной системой регулирования скорости, называемой тиристорный преобразователь-двигатель (ТП-Д).

5.3.3. Система тиристорный преобразователь-двигатель

Развитие силовой электроники позволило создать и успешно развивать статические преобразователи, преобразующие переменное напряжение в регулируемое постоянное.

Изменение величины постоянного напряжения осуществляется регулированием угла открывания вентилей в проводящей части переменного напряжения. Выпрямленное напряжение содержит постоянную  и переменную составляющие. Наличие пульсаций выпрямленного напряжения ухудшает условия коммутации двигателей и увеличивает потери в них, поэтому на выходе выпрямителя часто устанавливают фильтр, представляющий собой реактор, включаемый последовательно с цепью якоря и обладающий таким реактивным сопротивлением, которое позволяет обеспечить допустимый уровень пульсаций тока в якоре двигателя. Другим средством уменьшения пульсаций является использование схем повышенной пульсности, что позволяет значительно уменьшить пульсации тока выпрямленного напряжения и тока, однако требует больших затрат на оборудование. Схема реверсивного ТП представлена на рис. 5.7.

Уравнение электромеханической характеристики для системы ТП-Д имеет следующий вид:

,

где  – среднее значение выпрямленного напряжения при холостом ходе выпрямителя и полностью открытых тиристорах ();  – действующее значений переменного напряжения;  – число фаз выпрямителя;  - эквивалентное сопротивление якорной цепи;  – активное и реактивное сопротивления трансформатора;  - активное сопротивление сглаживающего реактора.

            Механическую характеристику системы ТП-Д можно получить из электромеханической, выразив значение тока через момент двигателя,

.

Вид МХ представлен на рис. 5.8. Характеристики имеют меньшую жесткость по сравнению с естественной МХ за счет дополнительных сопротивлений в якорной цепи. При различных углах включения наклон характеристик остаётся неизменным.

Характеристики системы ТП-Д с раздельным управлением комплектами в зоне малых нагрузок являются нелинейными. Нелинейность характеристик приводит к наличию дополнительных звеньев в системах регулирования, призванных выполнить линеаризацию МХ системы.

При наличии двух комплектов мостов ТП появляется возможность рекуперации энергии в сеть. Более того, такие преобразователи обладают бо’льшим быстродействием. Коэффициент полезного действия ТП составляет 0,9-0,94 для мощностей порядка 50-100 кВт, что существенно превосходит КПД системы Г-Д.

Таким образом, к достоинствам системы ТП-Д можно отнести широкий диапазон регулирования скорости, жесткость МХ, высокий КПД, небольшие массогабаритные показатели и невысокие эксплуатационные расходы, высокая надежность, более высокое быстродействие в сравнении с системой Г-Д.

Недостатком таких систем являются пульсации выпрямленного напряжения, снижение коэффициента мощности, обусловленное уменьшением угла управления тиристорами. Приближенно считают, что .

В настоящее время система ТП-Д является основным видом регулируемого электропривода постоянного тока, применяемым в широком диапазоне мощностей: от привода металлорежущих станков до привода крупных прокатных станов.

Описание: Фрагмент49

Описание: Фрагмент50

Рис. 5.7. Схема реверсивного ЭП

 системы ТП-Д

Рис. 5.8. Механические характеристики

 системы ТП-Д

5.4. Регулирование скорости асинхронного двигателя

            В последние 10-25 лет установилась четкая тенденция на переход от привода постоянного тока к приводу переменного тока благодаря совершенствованию законов управления двигателями переменного тока и развитию силовой электроники.

            Применение двигателей переменного тока обусловлено их простотой, дешевизной, повышенной надежностью, существенно меньшими габаритами и массой по сравнению с двигателями постоянного тока. К недостаткам регулирования скорости можно отнести высокую сложность теории машин переменного тока и алгоритмов управления, закладываемых в преобразовательные устройства.

            Наибольшее распространение получили следующие способы регулирования угловой скорости асинхронного двигателя: 1) реостатное; 2) изменением напряжения на статоре; 3) переключением числа пар полюсов; 4) изменением частоты питающего напряжения и др.

5.4.1. Реостатное регулирование

Схема включения АД при этом способе регулирования представлена на рис. 5.9. Реостатные характеристики получаются путем введения в цепь ротора добавочного сопротивления. При этом с ростом сопротивления падает жесткость МХ.

Допустимый диапазон регулирования скорости при данном способе

.

Так как , то приближенно

,

где  – относительная величина изменения скорости;  – относительная величина изменения момента.

Из полученной формулы видно, что при равных относительных отклонениях угловой скорости и момента нагрузки диапазон регулирования . При более низком допустимом отклонении угловой скорости диапазон оказывается ещё меньше.

Описание: Фрагмент51

Рис. 5.9. Схема включения двигателя при реостатном способе регулирования

            Потери мощности при реостатном регулировании складываются из переменных потерь, включающих потери в меди статора и ротора и во внешних резисторах роторной цепи, и постоянных – не зависящих от нагрузки. Суммарные постоянные потери в двигателе остаются примерно одинаковыми независимо от нагрузки и скорости двигателя.

            Электромагнитная и механическая мощности для АД

; ,

отсюда можно определить потери в роторе

.

Видно, что потери пропорциональны величине скольжения и распределяются пропорционально отношению сопротивлений ротора двигателя и добавочного сопротивления в цепи ротора, поэтому двигатель при реостатном регулировании может развивать момент, равный номинальному.

            Недостатками реостатного регулирования скорости являются ступенчатое регулирование скорости и использование дополнительной аппаратуры, невысокое быстродействие и большие потери энергии при регулировании.

5.4.2. Регулирование угловой скорости АД изменением напряжения на статоре

При изменении величины первой гармоники изменяется величина критического момента при постоянстве критического скольжения (рис. 2.28). Такое изменение достигается использованием тиристорного преобразователя напряжения (ТПН).

Максимальный момент при уменьшении напряжения снижается пропорционально квадрату напряжения:

,

где  – критический момент при сниженном напряжении;  – пониженное напряжение.

Из рис. 5.11 видно, что пределы регулирования скорости весьма ограничены, даже при вентиляторной нагрузке.

Для расширения диапазона используют замкнутые по скорости САР, структурная схема которой представлена на рис. 5.10. В состав такой САР сходит датчик скорости (BR) и регулятор скорости, на который поступает разность между заданным  и текущим  значением скоростей. На выходе регулятора скорости вырабатывается сигнал, подающийся на вход системы импульсно-фазного управления, которая вырабатывает управляющие импульсы для ТПН. Особенность такого регулирования заключается в том, что все характеристики сходятся в точке синхронной скорости , поэтому, чем меньше скорость, тем выше скольжение и больше потери в двигателе. Механические характеристики двигателя при фазовом управлении в замкнутой САР скорости представлены на рис. 5.11.

Описание: Фрагмент52

Описание: Фрагмент53

Рис. 5.10. Структурная схема замкнутой САР скорости АД при фазовом управлении

Рис. 5.11. Механические характеристики САР скорости АД при фазовом управлении

Двигатель при таком способе регулирования может работать продолжительное время при условии

.

Допустимый момент можно найти, приравнивая допустимые потери к номинальным

,

откуда

.

Кривая допустимого момента по нагреву представлена на рис.5.11.

Данный способ регулирования нельзя применять для механизмов, работающих в продолжительном режиме работе с постоянной нагрузкой. Эффективным оказывается использование фазового регулирования для механизмов, у которых статический момент зависит от скорости двигателя , например, для приводов вентиляторов, насосов, компрессоров. Этот способ также применим, когда двигатель работает на пониженных скоростях малое время относительно всего цикла работы, например, лифты. В этом случае завышение установленной мощности двигателя невелико.

Достоинством фазового управления является более низкая стоимость преобразователя (ТПН) в сравнении с преобразователем частоты (ПЧ) равной мощности, что позволяет для указанных механизмов обеспечить приемлемое качество технологического процесса без дополнительных затрат.

5.4.3. Изменение числа пар полюсов

Из выражения для угловой скорости АД:

,

видно, что регулирование скорости можно осуществлять изменением числа пар полюсов p обмотки статора двигателя. Так как данная величина может быть только целым числом, регулирование скорости оказывается ступенчатым.

            Для данного вида регулирования изготавливаются многоскоростные АД с КЗР. В пазах сердечника статора размещают либо две независимые обмотки, либо одну полюснопереключаемую.

            Различают две основные схемы переключения. Схема «звезда/двойная звезда» (рис. 5.12, I-II) обеспечивает регулирование с постоянством момента. Такую схему целесообразно применять в электроприводе с постоянно действующим моментом нагрузки при изменении частоты вращения. Схема «звезда/звезда» (рис.5.12, I-III) также даёт двукратное изменение числа пар полюсов, однако регулирование происходит при постоянстве мощности, то есть при переключении на повышенную скорость момент уменьшается в два раза. Такие схемы разумно применять в приводах, где момент сопротивления обратно пропорционален частоте вращения. Механические характеристики АД при регулировании скорости изменением числа пар плюсов представлены на рис. 5.13.

Описание: Фрагмент54

Описание: Фрагмент55

Рис. 5.12. Схемы соединения катушечных групп обмоток статора

Рис. 5.13. Механические характеристики АД при переключении числа пар полюсов

            Многоскоростные АД широко применялись в электроприводах, допускающих ступенчатое регулирование частоты вращения (привода лифтов, вентиляторов, станков). Достоинством такого способа является сохранение высоких экономических показателей при переходе с одной частоты вращения на другую, так как на всех ступенях переключения обмотки статора КПД и коэффициент мощности двигателя остаются практически неизменными. К недостаткам относят большую в сравнении с обычными АД сложность, завышенные габариты, большую стоимость. Кроме того, необходимость переключения обмоток статора на разное число пар полюсов требует усложнения коммутационной аппаратуры, что так же приводит к возрастанию цены электропривода в целом. В настоящее время этот способ вытесняется частотным регулированием.

           

5.4.4. Частотное регулирование скорости асинхронного двигателя

            Частотный способ регулирования скорости АД является превалирующим и основным. Чем это обуславливается? В первую очередь в настоящее время развита теория машин переменного тока, что позволило найти оптимальные с некоторых позиций законы управления АД. Развитие промышленной электроники позволило в полной мере реализовать данные законы в «железе».

            Существуют системы скалярного, векторного управления и системы прямого управления моментом. Выбор способа и принципа управления определяется совокупностью статических, динамических и энергетических требований к асинхронному электроприводу.

            Принцип скалярного управления частотно-регулируемого асинхронного электропривода основан на изменении частоты и текущих значений модулей переменных АД (напряжений, магнитного потока, потокосцеплений и токов цепей двигателя). Этот принцип является наиболее распространённым в связи с тем, что ему свойственна техническая простота измерения и регулирования переменных АД, а так же возможность построения разомкнутых систем управления скоростью. Основной недостаток заключается в трудности реализации желаемых законов регулирования скорости и момента АД в динамических режимах.

            Принцип векторного управления связан как с изменением частоты и текущих значений переменных АД, так и с взаимной ориентацией их векторов в полярной или декартовой системе координат. Благодаря контролю положения углов переменных такой способ обеспечивает полное управление АД как в статических, так и в динамических режимах, что даёт заметное улучшение качества переходных процессов по сравнению со скалярным управлением.

            Системы прямого управления моментом являются продолжением и развитием систем векторного управления. Задачей прямого управления моментом является обеспечение быстрой реакции электромагнитного момента двигателя на управляющее воздействие. В отличие от векторного управления, где изменение момента производится путем воздействия на ток статора, в системе с прямым управлением моментом управляемой величиной является потокосцепление статора.

            Преобразователи частоты, предназначенные для частотно-регулируемых АД, подразделяются по типу связи с питающей сетью на непосредственные ПЧ (НПЧ) и двухзвенные ПЧ (ДПЧ) с промежуточным звеном постоянного или переменного тока.

Момент АД пропорционален магнитному потоку  и активной составляющей вторичного тока :

,

где  – конструктивная постоянная АД;  – угол сдвига между ЭДС и током ротора;

.

Из формулы для момента видно, что уменьшение магнитного потока, являющееся следствием увеличения частоты , приведет к возрастанию , а следовательно и потерь в роторе  и одновременному уменьшению допустимого момента двигателя по условиям охлаждения двигателя. Уменьшение частоты при постоянстве амплитуды напряжения , как было показано в п. 4.3.3, также не допустимо по условиям насыщения магнитной системы машины. поэтому регулирование скорости двигателя изменением частоты питающего напряжения при условии постоянства момента двигателя приемлемо только при одновременном изменении амплитуды питающего напряжения, то есть выполнении закона , что обеспечивает практически постоянный магнитный поток в двигателе.

Для реализации указанного закона управления между сетью и двигателем включается преобразователь частоты (ПЧ), обеспечивающий одновременное изменение частоты и амплитуды напряжения на двигателе. При пониженных скоростях у самовентилируемых двигателей уменьшается отвод тепла в окружающую среду, поэтому в таких случаях необходимо снижать допустимый момент на двигателе.

При частотном регулировании по причинам, обусловленными механической прочностью подшипников и элементами ротора, поднимать частоту выше . Поэтому основной способ регулирования скорости заключается в уменьшении частоты напряжения.

Для построения примерного вида механических характеристик примем, что , тогда уравнение для критического момента можно переписать следующим образом:

.

Из формулы видно, что критический момент при выполнении закона  остаётся постоянным. Условие пренебрежения активного сопротивления статора корректно при высоких скоростях двигателя, когда . При низких скоростях падение напряжения на активном сопротивлении статора  становится сопоставимо с величиной напряжения на зажимах статора, что приводит к падению перегрузочной способности двигателя . Для того, чтобы реализовать одинаковую перегрузочную способность при частотном регулировании в области низких частот вращения используют так называемую «IR-компенсацию », которая заключается в том, что на малых скоростях делается добавка напряжения на статоре, компенсирующая .

            Диапазон регулирования скорости в разомкнутых системах составляет . В замкнутых системах диапазон может быть существенно расширен.

           

Описание: Фрагмент56

Описание: Фрагмент57

Рис. 5.14. Схема включения АД

 при частотном регулировании

Рис. 5.15. Механические характеристики системы ПЧ-АД

Обратите внимание на лекцию "7 Судебное представительство".

Основные сложности, возникающие при реализации частотного управления заключаются в следующем:

1) для получения в системах ПЧ-АД свойств аналогичных (или даже превосходящих) свойства систем ТП- ДПТ необходимо получение информации о различных параметрах АД;

2) системы являются сильно нелинейными и для получения высококачественных систем необходимо вводить звенья, компенсирующие нелинейность объекта регулирования;

3) закон  не является оптимальным, и требуется корректировка закона, учитывающая  на валу двигателя;

4) в АД входят параметры , величина которых зависит от степени насыщения машины нелинейно. Кроме этого изменяются значения активных сопротивлений статора и ротора при изменении температуры обмоток двигателя, что также необходимо учитывать.

            Несмотря на указанные сложности, современные частотные приводы успешно функционируют, обеспечивая высокое качество процесса регулирования скорости.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5168
Авторов
на СтудИзбе
438
Средний доход
с одного платного файла
Обучение Подробнее