Популярные услуги

Главная » Лекции » Медицина » Аналитическая и экологическая техника » Методы оптико-спектрального анализа

Методы оптико-спектрального анализа

2021-03-09СтудИзба

Лекция №5

 Методы оптико-спектрального анализа

В практике лабораторных исследований большую группу состав­ляют методы оптико-спектрального анализа (ОСА), в которых со­став исследуемой биопробы и концентрация компонентов определя­ются на основании изучения ее оптического спектра. Они особенно эффективны при изучении молекулярного и элементного состава компонент пробы.

Все методы этой группы отличаются необходимостью предвари­тельного перевода исследуемой пробы в атомарное состояние. Извест­но большое количество способов атомизации вещества — газовое пла­мя, электроподогрев, электрическая дуга, лазер и т. п., с помощью ко­торых переводят атомы биопробы в возбужденное состояние, в резуль­тате чего они на короткие периоды времени переходят с низшего энер­гетического уровня на более высокие. При обратном их переходе на нижний уровень основного состояния происходит испускание фото­нов, в результате чего можно зарегистрировать характерный спектр испускания или поглощения лучистой энергии, по которому и судят о составе исследуемой пробы (каждому элементу соответствует свой на­бор спектральных линий). Чаще всего перевод исследуемого соедине­ния в атомный пар осуществляют путем распыления вещества в горел­ке с последующей термической диссоциацией в пламени.

Взаимодействие света с веществами – это взаимодействие свето­вого электромагнитного поля, колеблющегося с высокой частотой, с электронами, атомами и молекулами веществ, находящимися в этом поле.

Свет ведет себя как электромагнитная волна только при распространении через непоглощающие среды. В остальных случаях световой поток представляется, как поток частиц — фотонов.

Согласно молекулярной теории света, под действием электромагнит­ного поля световой волны в молекулах среды происходит смещение связующих пар внешних (оптических) электронов в сторону более элек­троотрицательного атома. Это смещение приводит к несовпадению центров положительных и отрицательных зарядов, т. е. молекулы по­ляризуются и приобретают характер диполей. Диполи совершают вы­нужденные колебания с частотой, равной частоте падающей световой волны. Кроме того, данные диполи являются источниками вто­ричных сферических волн. Если среда однородна и изотропна (свойства среды одинаковы во всех направлениях) и падающая световая волна плоская, то из-за интерференции ее со всеми вторичными волнами, излучаемыми диполями среды, получается плоская ре­зультирующая волна, которая распространяется в соответствии с за­конами преломления и отражения света. Так как распространение света в преломляющей среде связано с поляризуемостью ее молекул, то различные соединения, среды и вещества имеют разную прелом­ляющую способность.

Рефракция есть мера электронной поляризуемости вещества, ха­рактеризующая его физико-химическое состояние. Рефракцию исполь­зуют для определения состава и структуры химических соединений. Рефрактометрические методы нашли применение в лабораторной ме­дицине. Например, измерение содержания общего белка в сыворотке крови или в лиофильно высушеных биопрепаратах крови — сыворо­точном альбумине, фибриногене и др. проводят с помощью специаль­ного прибора рефрактометра.

Рекомендуемые материалы

Распространение света в среде связано с поляризуемостью моле­кул данного вещества. Под действием поля электроны атомов или молекул вещества совершают вынужденные колебания. При совпаде­нии частоты колебания поля приходящей волны и собственной час­тоты колебаний электронов возникает резонанс и поглощение света.

Зависимость фазовой скорости распространения световой волны в веществе от длины волны называют дисперсией света, или рефрактометрической дисперсией.

Интерференция наблюдается при определенных условиях при на­ложении двух или нескольких световых пучков. Интенсивность света в области перекрытия пучков имеет характер чередующихся светлых и темных полос, причем в максимумах интенсивность больше, а в минимумах меньше суммы интенсивностей пучков.

Интерференция световых волн заключается в сложении колебании частот с разными фазами.

Интерференционный светофильтр

Явление интерференции широко используется в оптической тех­нике, в частности, для изготовления интерференционных светофильтров. Интерференционный светофильтр состоит из нескольких после­довательно расположенных тончайших непоглощающих слоев из диэ­лектрических материалов — окислов , , ; фторидов , , ; сульфидов ,  и других соединений. При прохождении белого света через такую систему с многочис­ленными границами раздела свет многократно переотражается. В результате интерференции отраженных лучей с проходящими лучами (отраженные и проходящие лучи когерентны) часть светового потока ослабляется лишь незначительно, а часть—в 10— 10раз.                                                                          

Светофильтры используются в фотометрах в качестве монохроматоров.

Дифракция света — это отклонение света от прямолинейного распространения, когда свет огибает контур непрозрачных тел и, следовательно, проникает в область геометрической тени. Если на щель падает световая волна, то, фокусируя линзой свет, прошедший через щель, можно наблюдать чередование максимумов и минимумов освещенности.

Если свет падает не на одну щель, а на ряд па­раллельных щелей (решетку), то пуч­ки, испытав дифракцию на каждой щели, интерферируют между собой.

Простейшая дифракционная ре­шетка состоит из прозрачных участков (щелей), разделенных непрозрачными промежутками. На решетку направля­ется параллельный пучок света. На­блюдение ведется на непрозрачном экране в фокальной плоскости линзы,  установленной за решеткой.

В каждой точке Р на экране в фо­кальной плоскости линзы соберутся лучи, которые до линзы были парал­лельны между собой и отклонились на решетке под определенным углом θ. Для того, чтобы в точке Р на­блюдался интерференционный максимум, разность хода ∆ между вол­нами, испущенными соседними щелями, должна быть равна целому числу длин волн:

,

где d — период решетки, m — целое число, которое называется по­рядком дифракционного максимума. В тех точках фокальной плоскости линзы, для которых это условие выполнено, располагаются главные максимумы дифракционной картины.

Рис. 6.21. Дифракция света на решетке.

Решетка способна разлагать излучение в спектр, то есть она является спектральным прибором — составной частью монохроматоров (устройств для выделения монохроматического света). Если на решетку падает      немонохроматическое излучение, то в каждом порядке дифракции (то есть при каждом значении m) возникает спектр исследуемого |излучения. Одной из важнейших характеристик дифракционной решетки является ее разрешающая способность, характеризующая возможность разделения с помощью данной решетки двух близких спектральных линий с длинами волн  и . Спектральной разрешающей способностью R называется отношение длины волны  к минимальному возможному значению . Разрешение дифракционной решетки зависит только от порядка спектра m и от числа периодов решетки N.

Поляризацией света называется выделение из пучка естественной света лучей, поляризованных в определенной плоскости. В источни­ках света элементарные процессы излучения света атомами происходят независимым образом, поэтому в обычном свете оси электромагнитных волн ориентированы хаотично, и свет, испускаемый обычны ми источниками (солнечный свет, излучение ламп накаливания и т. п.) неполяризован. Неполяризованный свет называют также естественным светом.

Вещества, способные изменять (вращать) плоскость поляризации света, являются оптически активными веществами; вещества, не способные изменять плоскость поляризации света, являются оптически неактивными. Поляриметрический метод анализа основан на измерении угла вращения плоскости поляризации луча света, прошедшего через оптически активную среду, которая помещается между поляризатором и анализатором.

Глюкоза имеет ассиметричные атомы углерода, связанные с разными группировками, поэтому обладают способностью вращать плоскость поляризованного луча. На этом основано определе­ние глюкозы в моче с помощью поляриметра. Угол вращения плоскости поляризации зависит от оптической толщины раствора и концент­рации глюкозы в растворе.

Поляриметр

Основной частью любого прибора для поляриметрического анализа является источник поляризованных лучей (поляризатор) и измеритель угла поляризации (анализатор).

На рис. 6.28. приведена схема простейшего поляриметра.

Рис. 6.28. Схема простейшего поляриметра.

1 — поляризатор; 2 — пластинка бикварца; 3 — кювета с раствором; 4 — анализатор.

При использовании простейшего поляриметра анализатор настра­ивают на «темноту», вращая его вокруг продольной оси. Затем вносят в прибор кювету с исследуемой жидкостью. При этом наблюдается просветление поля окуляра вследствие вращения плоскости поляри­зации раствором. Поворачивая анализатор, добиваются нового потем­нения поля, причем угол поворота анализатора соответствует углу вра­щения раствором плоскости поляризации. Для более точного опреде­ления момента затемнения поля окуляра применяют дополнительную пластинку 2, состоящую из двух пластинок левовращающего и право­вращающего кварца (так называемая пластинка бикварца).

При ма­лейшем повороте анализатора обе половинки бикварца меняют свою окраску: одна становится синей, а другая — красной. Таким образом фиксируется малейший поворот анализатора.                                    

ФОТОМЕТРИЧЕСКИЕ СХЕМЫ

ИЗМЕРЕНИЯ ОПТИЧЕСКОГО ПОГЛОЩЕНИЯ

РАСТВОРОВ

Метод измерения оптического поглощения исследуемого раствора относительно раствора сравнения в одной и той же спектральной полосе излучения реализуется двумя основны­ми схемами:

1. Схемой фотометрирования с одним световым лучом (однолучевое  фотометрирование).

2.  Схемой фотометрирования с двумя световыми лучами (двухлуче-вое фотометрирование).

Однолучевое фотометрирование (рис. 8.20). Вначале измеряется сигнал фотодетектора, соответствующий величине излучения Iст про­шедшего через раствор сравнения (стандартный раствор, холостую пробу) и кювету, содержащую этот раствор. Оптическая плотность кюветы с раствором сравнения Dсигнал  Iсвязаны соотно­шением:

.

Затем измеряется сигнал фотодетектора, соответствующий величины излучения I, прошедшего через кювету с исследуемой пробой. Оптическая плотность исследуемого раствора D сигнал  связаны соотношением:

.

Искомая плотность  равна:

.

Рассмотренная схема измерения содержит одно измерительное плечо. Чтобы измерить сигналы, соответствующие и  необходимо попеременно вводить в измерительное плечо кювету с исследуемым раствором и кювету с раствором сравнения. Такую схему называют схемой прямого фотометрирования.

Рис. 8.20. Схема однолучевого метода измерения оптической плотности иссле­дуемого раствора относительно раствора сравнения в одной и той же спект­ральной полосе излучения.

Последовательно измеряется оптическая плотность кюветы со стандартом (а) и исследуемой пробой (б).

Измерение оптической плотности проводится в одном канале пос­ледовательно. Вначале измеряется сигнал раствора сравнения (а), затем — исследуемого раствора (б). Результаты регистрируются раз­дельно, обработка производится вручную. Недостаток метода в боль­шом временном интервале между фотометрированием растворов, что приводит к погрешностям измерений из-за временной нестабиль­ности оптико-электронного тракта (источника излучения и фото­приемников).

Двухлучевое фотометрирование. Оптическая плотность исследуе­мого и сравнительного образцов измеряется одновременно в двух ка­налах. Далее могут быть различными схемы сопоставления сигналов. На рис. 8.21. показана схема, при которой сигналы поступают на 2 фотоприемника и представляются на 2-х индикаторах. Устраняется временная нестабильность источника излучения. Недостаток схемы в наличии 2-х фотоприемников, имеющих разную временную ста­бильность параметров, что приводит к погрешностям измерений.

Рис. 8.21. Схема двухлучевого фотометрирования с одним монохроматором и с двумя раздельными каналами измерения.

На рис. 8.22 представлена схема, при которой оптическая плот­ность исследуемого и сравнительного образцов измеряется одновре­менно в двух каналах, сигналы поступают на 2 фотоприемника и на устройство сравнения. Устройство сравнения может быть нуль-инди­катором, в этом случае одной из щелей добиваются выравнивания сиг­налов в 2-х каналах. Искомую величину находят по шкале на щели (ФЭК-56). В другом случае на индикатор может выводиться искомая величина.

"Что такое FTP-сервер" - тут тоже много полезного для Вас.

Рис. 8.22. Схема двухлучевого фотометрирования с одним монохроматором, с двумя фотоприемниками и устройством сравнения.

Устраняется временная нестабильность источника излучения. Не­достаток схемы в наличии 2-х фотоприемников, имеющих разную вре­менную стабильность параметров, что приводит к погрешностям из­мерений.

Рис. 8.23. Схема двухлучевого фотометрирования с «разделением» 2-х лучей во времени с одним монохроматором, одним фотоприемником и анализатором.

Схема с «разделением» 2-х лучей во времени (рис. 8.23). Два луча от монохроматора приходят на вращающийся диск с зеркальными и прозрачными секциями (переключатель лучей). Короткие импульсы 2-х лучей, разделенные во времени, поступают на один фотоприемник. Импульсные сигналы фотоприемника сравниваются анализатором и на индикатор поступает искомая величина. Устраняется временная нестабильность источника излучения и фотоприемного тракта. Наи­более точная схема измерения.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5137
Авторов
на СтудИзбе
440
Средний доход
с одного платного файла
Обучение Подробнее