9. Автоматизация компрессорных установок

2021-03-09 СтудИзба

9. Автоматизация компрессорных установок

9.1. Регулирование производительности компрессорных установок

          Основная задача регулирования режима работы компрессорных агрегатов и станций состоит в поддержании постоянного заданно­го давления сжатого воздуха в пневмосети путем изменения про­изводительности компрессоров соответственно потреблению сжато­го воздуха. В общем случае такое регулирование может быть осу­ществлено воздействием на коммуникации, компрессор или его привод. Ниже рассматриваются основные применяемые и перспек­тивные способы регулирования производительности компрессоров.

Регулирование перепуском с нагнетания на всасывание, приме­няемое на поршневых компрессорах, заключается в переводе комп­рессора на холостой режим работы путем соединения нагнетатель­ной полости каждого цилиндра с полостью всасывания посредст­вом байпаса-трубопровода, снабженного вентилем  (клапаном, задвижкой), управление которым может осуществляться вручную или автоматически. Этот способ по характеру регулирования сту­пенчатый; он обычно применяется при пуске и останове компрессора. Использовать его для регулирования производительности компрессора при работе нецелесообразно вследствие неэкономич­ности.

Регулирование дросселированием на всасывании предусматри­вает установку во всасывающем трубопроводе управляемого дросселирующего устройства (заслонки). Уменьшая проходное сечение дросселя, увеличивают его сопротивление и снижают давление воз­духа, поступающего в первую ступень компрессора. При плавном изменении давления воздуха также плавно изменяется производи­тельность компрессора. Такой способ регулирования производи­тельности является основным для турбокомпрессоров (его приме­нение на поршневых компрессорах ограничено повышением темпе­ратуры сжатого воздуха до опасного для смазочных масел значе­ния). Он прост в реализации, но неэкономичен.

Наиболее распространено для поршневых компрессоров регулирование отжимом всасывающих клапанов. Сущность этого спо­соба заключается в следующем: всасывающие клапаны обеих сту­пеней удерживаются в открытом состоянии, поэтому сжатие в по­лости цилиндров прекращается и подача становится равной нулю. Полный отжим всасывающих клапанов для компрессоров двойного действия позволяет получить три ступени регулирования произво­дительности: 100% —без отжима клапанов; 50% — при открытии всасывающих клапанов передней полости цилиндра низкого дав­ления и задней полости цилиндра высокого давления; 0% — при открытии всех всасывающих клапанов обеих ступеней.

Более          экономичен (по сравнению с отжимом всасывающих кла­панов) способ регулирования производительности посредством подключения к цилиндру дополнительной емкости (мертвого про­странства), применяемый на современных поршневых компрессо­рах. Сущность его состоит в том, что с увеличением объема мерт­вого пространства уменьшается объем свежего воздуха, засасывае­мого компрессором, так как воздух, ранее сжатый в мертвом про­странстве, при всасывании расширяется и занимает часть полез­ного объема цилиндра.

Обычно регулирование производительности компрессора изме­нением мертвого пространства ступенчатое: к цилиндру компрес­сора с помощью управляемых клапанов подключают дополнитель­ные объемы, представляющие собой отдельные полости, присоеди­ненные к цилиндрам, или полости, расположенные непосредственно в корпусе цилиндров.

Наиболее эффективно и перспективно регулирование произво­дительности компрессоров воздействием на их привод. Один из видов такого регулирования — периодические остановы компрессо­ра, осуществляемые остановом двигателя или отсоединением комп­рессора от двигателя с помощью электромагнитных или гидравли­ческих муфт. Регулирование производительности в обоих случаях ступенчатое. Регулирование остановом двигателя производится, как правило, на компрессорах с приводными двигателями мощно­стью до 300 кВт (производительностью до 50 м3/мин) и в сочетании с другими способами регулирования, например, со ступенчатым регулированием поршневых компрессоров подключением дополни­тельных мёртвых объёмов, а также при смешанном оборудовании компрессорной станции (турбо- и поршневые компрессоры). В по­следнем случае основное регулирование режима работы станции осуществляется плавным регулированием производительности тур­бокомпрессоров с последующим при необходимости отключением (включением) поршневых, а в некоторых случаях и турбокомпрес­соров.

Рекомендуемые файлы

Плавное и экономичное регулирование производительности компрессора в широких пределах может быть обеспечено измене­нием частоты вращения с помощью регулируемого электроприво­да. При этом производительность изменяется пропорционально уг­ловой скорости. Этот способ регулирования является перспектив­ным для турбокомпрессоров. Для поршневых компрессоров произ­водительностью до 50 м3/мин применение регулируемого электро­привода пока не оправдано.

Автоматическое регулирование производительности компрессо­ров осуществляется в системах автоматической стабилизации дав­ления сжатого воздуха. Такие системы могут быть дискретными и непрерывными и реализуются с помощью различных регуляторов общего назначения соответственно дискретного и непрерывного действия.

Если потребители сжатого воздуха при изменении нагрузки до­пускают отклонение давления от заданного значения в сравнитель­но больших пределах, то для регулирования режима работы комп­рессоров применяют простые двухпозицнонные (релейные) регуля­торы давления, воздействующие на исполнительные органы для ступенчатого изменения их производительности. Когда по условиям технологического процесса требуется высокая точность поддержа­ния давления при широком диапазоне расхода сжатого воздуха, используются более сложные регуляторы непрерывного действия, плавно изменяющие производительность компрессоров.

Дискретные системы регулирования применяются на поршне­вых компрессорах. Они, как правило, реализуются на основе элект­роконтактных манометров ЭКМ.-1У, воздействующих на электро­магнитные клапаны, с помощью которых подсоединяются дополни­тельные мёртвые объёмы.

Системы непрерывного действия преимущественно применяются на турбокомпрессорах. Они строятся на основе гидравлических и электрических ПИ-регуляторов.

На рис. 9.1 представлена функциональная схема системы авто­матического регулирования (системы стабилизации) давления сжатого воздуха в коллекторе, имеющая регулятор непрерывного действия. Объект регулирования — компрессор с воздухосборником Л'—В, регулируемая величина — давление р воздуха, которое должно поддерживаться постоянным с допустимой погрешностью. Сигналы ХЗ задатчика 3 и ХД датчика давления ДД, представляют собой перемещения или напряжения (в зависимости от типа регулятора), пропорциональные заданному рз и фактическому р дав­лению воздуха. Пропорционально-интегральный регулятор ПИ-Р воспринимает разность DХ=Хз – ХД и управляет положением m регулирующего органа (заслонки), компенсируя главное возму­щающее воздействие — расход воздуха Qр путём установления производительности компрессора, равной существующему в дан­ный момент расходу.

Компрессор с выходными емкостями как объект регулирования может быть представлен приближенно апериодическим звеном с передаточной функцией

,

где ko, Тo передаточный коэффициент и постоянная времени объекта.


ПИ-регулятор обеспечивает устойчивое астатическое регулиро­вание производительности компрессора, поддерживая с высокой точностью давление на заданном уровне.

Рис.9.1. Функциональ­ная схема системы ав­томатического   регули­рования давления

9.2. Автоматизация компрессорных агрегатов и станций

Современные рудничные компрессоры в качестве привода имеют синхронные двигатели, скорость которых не регулируется.

Автоматическая система компрессорного агрегата с нерегули­руемым электроприводом может быть представлена схемой, пока­занной на рис. 9.2. Система содержит: датчики Д давления сжато­го воздуха и теплотехнических параметров контроля агрегата (тем­пературы, давления, расхода, уровня, положения задвижек, кла­панов, заслонок и др.); электропривод компрессора ЭП (синхрон­ный двигатель с возбудителем и пусковым устройством); исполнительный механизм ИМ, управляющий положением органа регули­рования (клапанов, дроссельной заслонки) производительности Qк компрессора; вспомогательные технологические механизмы ВМ (разгрузочный клапан, маслонасосы, задвижка водяного охлажде­ния, вентили продувки); аппаратуру управления и регулирования АУР, осуществляющую автоматическое управление компрессорным агрегатом; пульт оператора (диспетчера) ПО с органами задания и контроля режимов работы агрегата.

Коллектор нагнетания сжатого воздуха


Рис. 9.2. Функциональная схема автоматической системы компрес­сорного агрегата с нерегулируе­мым электроприводом.

Аппаратура   автоматики, поставляемая комплектно с комп­рессором, обеспечивает:

автоматическое программное управление пуском и остановом компрессорного агрегата (вклю­чение и отключение в заданной последовательности    вспомога­тельных механизмов и двигателя компрессора);

автоматический контроль ре­жимов работы агрегата;

автоматическое регулирование производительности компрессора для поддержания заданного дав­ления сжатого воздуха в коллек­торе компрессорной станции;

автоматическую защиту электропривода компрессора (от асин­хронного режима работы синхронного двигателя, короткого замы­кания, перегрузки и др.), а также защиту, приводящую к отключе­нию компрессора при верхнем пределе давления сжатого воздуха в ступенях сжатия, превышении температуры масла в системе смазки, прекращении потока охлаждающей воды и других наруше­ниях нормального режима работы агрегата;

сигнализацию на пульте оператора — световую о нормальной работе агрегата, световую и звуковую об аварийном отключении компрессорного агрегата.

Отклонение контролируемых параметров от заданных значений указывает на ненормальные или нерациональные режимы работы систем агрегата, а в ряде случаев может привести к аварии.

Критическим параметром безопасной работы компрессорного агрегата является температура воздуха. Перегрев воздуха особен­но опасен для поршневых компрессоров, в которых смесь масла с воздухом при перегреве способна детонировать. Для контроля температуры применяют контактные термометры, термометры сопро­тивления, терморезисторы, манометрические термометры, термопа­ры и др.

К числу важнейших параметров, характеризующих работу комп­рессора, относится производительность, контроль расхода воздуха и сравнение его с расходом электрической энергии позволяет оце­нить эффективность работы отдельных компрессоров и системы пневмоснабжения в целом. Расход воздуха Qр определяется обычно путем измерения перепада давления на дроссельном устройстве (сопло, диафрагма), установленном на трубопроводе, в соответст­вии с уравнением:

,

где k – расчетный коэффициент; Dр = р1 – р2 – перепад давления на дроссельном устройстве, измеряемый дифференциальным мано­метром.

Для контроля производительности компрессоров преимущест­венное распространение получили дифманометры и дифтягомеры ДМ, ДТ2 мембранные с дифференциальными трансформаторами, работающие с автоматическими вторичными приборами, например с приборами КСД-3.

В настоящее время наиболее перспективны для контроля расхо­да воздуха в пневмосети и компрессорной станции мембранные электрические дифманометры ДМЭ.

Для автоматизации шахтных компрессорных станций, оборудо­ванных турбо- и поршневыми компрессорами, разработана унифи­цированная аппаратура автоматизации УКАС, основная задача которой — повысить эффективность работы автоматизированных компрессорных станций, производства и использования пневмоэнергии в результате:

применения регулируемого привода для управления режимом работы турбокомпрессоров изменением их угловой скорости;

автоматического регулирования  (стабилизации) давления в коллекторе компрессорной станции;

расширения объема информации, передаваемой диспетчеру, и. обеспечения тем самым возможности работы компрессорной стан­ции без постоянного присутствия обслуживающего персонала;

построения аппаратуры по блочно-модульному принципу с ис­пользованием герконовых реле и бесконтактных элементов, а в перспективе интегральных микросхем.

В состав аппаратуры УКАС входят:

щит управления турбокомпрессорным агрегатом УКАС-А (один на агрегат);

щит управления   поршневым   компрессорным   агрегатом УКАС-ПА (один на агрегат);

пульт оператора (один на агрегат);

щит управления компрессорной станцией УКАС-С (один на станцию из восьми агрегатов);

тиристорное ТЕ-8 или бесщёточное БВУ возбудительное уст­ройство (одно на агрегат);

первичные приборы теплотехнического контроля, устанавливае­мые на компрессорном агрегате.

Регулирование режима работы компрессорной станции (обес­печение равенства производства и расхода сжатого воздуха) с целью поддержания заданного давления при параллельной работе не­скольких компрессоров достигается как автоматическим поочеред­ным регулированием производительности отдельных компрессоров, так и изменением числа одновременно работающих компрессоров (включением и отключением приводов).

Функциональная схема системы автоматического управления компрессорной станцией приведена на рис. 9.3. Блок БКА опреде­ляет последовательность автоматического включения, регулирова­ния и останова агрегатов станции в соответствии с выбранными на пульте оператора номерами головного (включаемого первым), ра­бочих и резервных агрегатов.

Блок РД состоит из двух регуляторов давления РПИБ — рабо­чего и резервного, включаемого при неисправности работающего. Регулятор давления обеспечивает регулирование режима работы всех компрессоров станции для поддержания заданного давления сжатого воздуха в ее коллекторе. При отклонении давления возду­ха р в пневмосети от заданного значения рз выше допустимого по сигналу регулятора РД блок ЗРП задает АУР программу индиви­дуального управления очередным компрессорным агрегатом. Аппа­ратура АУР обеспечивает управление, технологические защиты и регулирование производительности агрегата.

В лекции "Заболевания желчного пузыря и билиарной системы" также много полезной информации.


Рис. 9.3. САУ компрессорной станции на базе аппаратуры УКАС:

БКА — блок задания команд и адресов про­граммы; ЗРП — задатчик-распределитель прог­раммы работы станции; КА1—КА8—компрессор­ные агрегаты; АУР1АУР8 — аппаратура уп­равления и регулирования агрегатов; Д1—Д8 — датчики теплотехнических параметров агрегатов;

Д — датчик давления сжатого воздуха в пневмосети; РД — регулятор давления; КС — кол­лектор станции.

Свежие статьи
Популярно сейчас