Популярные услуги

Вероятность

2021-03-09СтудИзба

Лекция1[1].

Вероятность

В теории вероятностей рассматриваются такие явления или опыты, конкретный исход которых не определяется однозначно условиями опыта (случаен), но по результатам большого числа экспериментов в среднем может быть предсказан (свойство статистической устойчивости).

Элементарным событием (элементарным исходом) называется любое событие - исход опыта, которое нельзя представить в виде объединения  других событий. Так как исход опыта случаен, то и любое элементарное событие случайно, далее будем говорить просто о событиях, не подчеркивая их случайность.

Пространством элементарных событий W (исходов) называется множество всех элементарных событий (исходов). {w1, …wn}, если в результате опыта обязательно наступает какой-либо из элементарных исходов и только один (один исход исключает любой другой). Пространство элементарных событий может содержать конечное, счетное и даже бесконечное множество элементарных событий.

Случайным событием (событием) называется подмножество пространства элементарных событий. Любое множество – это совокупность элементов. Элементами  события являются элементарные события, образующие это событие.

Пример. Бросается одна монета, она может упасть гербом (w1=Г) или решкой (w1=Р). W=(Г,Р).

Рекомендуемые материалы

Пример. Бросаются две монеты W = {(Г, Г), (Г,Р), (Р,Г), (Р,Р)}

 Пример. Капля дождя падает на прямоугольную площадку.

W= {(x,y), a<x<b, c<y<d}

Достоверное событие – событие, которое всегда происходит в результате данного опыта, оно содержит все элементарные события и обозначается W.

Невозможное событие – событие, которое не может произойти в результате данного опыта, оно не содержит элементарных событий и обозначается Æ.

Действия над событиями.

События определены как множества, поэтому действия над ними аналогичны действиям над множествами и хорошо иллюстрируются диаграммами Венна.

Пространство W будем обозначать прямоугольником, элементарное событие – точкой прямоугольника, а каждое событие – подмножеством точек этого прямоугольника. Результат операции над событиями будем заштриховывать.

Пусть выбираются карты из колоды карт. Событие А – выбор червонной карты, событие В – выбор десятки

Суммой двух событий А и В называется событие

С = А + В (или С = АВ), состоящее из элементарных событий, принадлежащих либо А, либо В.

Пример.

С = А + В – выбор любой червонной карты или любой десятки

Произведением двух событий А и В называется событие     D = AB (или D = AB), состоящее из элементарных событий, принадлежащих и А и В.

Пример.  АВ – выбор десятки червей

Разностью двух событий А и В называется событие

АВ, состоящее из элементарных событий, принадлежащих А и не принадлежащих В.

Пример. АВ –выбор любой червонной карты, кроме десятки

Классификация событий

Событие, состоящее из всех элементарных событий, не содержащихся в А, обозначим  и будем называть противоположным событием.

Пример. А –выбор червонной карты;

    –выбор любой карты другой масти..    = WА

 

Два     события А и В будем называть совместными, если каждое из них содержит хотя бы одно общее элементарное событие, т.е если АВØ.

Пример.   А выбор червонной карты и

 В – выбор десятки – совместные события, так как

АВ = выбор червонной десяткиØ  

Если общих элементарных событий у событий  А и В нет, то их будем называть несовместными событиями

(АВ = Ø).

Пример. А – выпадение четного числа очков А = {2, 4, 6}.

В – выпадение нечетного числа очков  В = {1, 3, 5}

Очевидно, что А и В несовместны.

Полная группа событий – это совокупность n событий А1, А2, …, Аn, одно из которых обязательно произойдет, т.е.

Свойства операций над событиями

1.  =Ø                    6. А = А

2. А + А = А              7. А Ø = Ø                  Коротко.  Если А  В, то

3. А А = А                  8  = А                                 А + В = В

4. А +  =                         9.                          А В = А

5. А + Ø = А               10.  = Ø

Коммутативность операций

А + В = В + А;                      А В = В А

Ассоциативность операций

А + (В + С) = (А + В) + С = А + В + С                 А(В С) = (А В) С = А В С

Дистрибутивность операции сложения относительно умножения

А (В + С) = А В + А С

Дистрибутивность операции умножения относительно сложения

А + (В С) = (А + В)(А + С)

Пример. Вычислим (A+B)(A+C)=AA+BA+AC+BC=A+BC.

В самом деле, BAÌA, ACÌA, AA=A, тогда AA+BA=A, A+AC=A.

Правило двойственности (теорема де Моргана)

Для всякого сложного события, выраженного через сумму и произведение (даже счетного количества) событий, противоположное событие может быть получено путем замены событий им противоположными и замены знака произведения на знак суммы, а знака суммы на знак произведения, при оставлении порядка операций неизменным

Пример.                     

Алгебра событий.

Пусть W - пространство элементарных событий. Алгеброй событий S называется такая система случайных событий S, что

1) SÉW,    2) " A, B Ì S Þ A+BÌS, ABÌS, ABÌS.

Следствие Æ= WW Ì S

Пусть W содержит конечное число элементов, W= {w1,…wn}. Тогда алгебру S можно построить как множество всех подмножеств W.

S={Æ, {w1}, … {wn}, {w1,w2}, …{w1,wn}, …{wn-1,wn}, …{w1, …,wn}}, в ней всего 2n элементов

Аналогично стоится алгебра для счетного числа событий.

Если в результате опыта стало известно, произошли или нет события A, B, то можно заключить, произошли или нет события , A+B, AB, AB, поэтому события  должны выбираться из определенного класса – алгебры событий.

Для бесконечного (не счетного) числа событий  класс событий должен быть сужен. Вводится  s- алгебра событий.

Сигма-алгеброй  (s-алгеброй) событий B называется непустая система подмножеств пространства элементарных событий, такая что

1) AÌBÞÞB,

2)   A1, A2, …An, …ÌBÞ( A1+A2+ …+An+, …)ÌB, …ÌB.

Любая сигма-алгебра событий является алгеброй событий, но не наоборот.

Вероятность.

Классическое определение вероятности события

В классическом определении вероятности исходят из того, что пространство элементарных событий Ω содержит конечное число элементарных исходов, причем все они равновозможные.

Случаями называются равновозможные, несовместные события, составляющие полную группу.

В классическом определении вероятности мы находимся в рамках схемы случаев в том смысле, что элементарные события  равновозможны, т.е. представляют собой случаи.

Пусть N – общее число случаев в Ω, а NА – число случаев, образующих событие А (или, как говорят, благоприятствующих событию А).

Определение. Вероятностью события А называется отношение числа NA случаев, благоприятствующих событию А к общему числу N случаев, т.е.      P(A) = . Данное определение вероятности события принято называть классическим определением вероятности.

Примеры. 1. Бросание игральной кости. Ω = {w1, w2,…,w6}     N = 6.

А – количество очков кратно трем  А = {w3,w6} NA = 2.

.

2. Бросание 2-х игральных костей.  Ω = {w11, w12,…,w66};         N =36.

wkl = (ak, bl),    k,l =

А – сумма цифр (очков) равна 5. А = {(1,4), (2,3), (3,2), (4,1)}; NA = 4

.

3. В урне а белых и b черных шаров. Опыт – вынимается один шар.

    А – шар черный.

Исходя из классического определения вероятностей, легко доказать свойства вероятности:

1) Р(Ω) = 1                 (NA = N);

2) 0           ( 0;

3) Если   А В = Ø, то  Р(А + В) = Р(А) + Р(В)       ( NA+B=NA+NB)

и их следствия

4) Р(Ø) = 0                 (NØ) = 0;

5) Р() = 1- Р(А)                  (     = Ø,         Р(А) + Р() = 1);

6) Если , то    Р(А) Р(В)                (NA NB).

При практическом применении формулы классической вероятности наиболее сложным является определение общего числа равновозможных исходов и числа благоприятствующих исходов.

Здесь используется основной принцип комбинаторики: пусть некоторая операция Р представляет собой последовательность n операций Pk (k=1, …n), каждая из которых может быть выполнена mr способами. Тогда операция Р может быть выполнена способами.

Пусть мы делаем выборку поочередно m элементов (например, шаров) из n элементов. Мы можем возвращать очередной шар (в число n шаров), тогда при каждом очередном выборе мы  будем иметь все те же n шаров. Такая выборка называется выборкой с возвращением. А можем и не возвращать шар, тогда при каждом выборе мы будем выбирать из все меньшего числа шаров. Такая выборка называется выборкой без возвращения. С другой стороны, мы можем учитывать порядок появления шаров. Такая выборка называется упорядоченной или размещением из n шаров по m шаров.  Если порядок шаров при выборе не учитывается, важно лишь, какие шары выбраны, но не важно, в каком порядке, то такая выборка называется неупорядоченной или сочетанием из n шаров по m шаров. Выясним, сколькими способами можно произвести ту или иную выборку

Сочетания

Размещения

Без возвращения

С возвращением

Формулы для размещений легко получаются из принципа комбинаторики. Для того, чтобы перейти от размещений (без возвращений) к сочетаниям (без возвращений), нужно упорядочить выборки, т.е. исключить те из них, которые отличаются только порядком элементов. Выборки, отличающиеся  только порядком элементов, называются перестановками. Число перестановок из m элементов равно Pm==m!. Поэтому .

Формулу для сочетаний с возвращением примем без доказательства (ее доказательство приведено в вып. ХV1 на стр. 50 – 51).

Пример. Производится выборка двух шаров (m=2) из урны, в которой находится 3 шара (n=3). Приведем эти выборки.

1) Размещения с возвращением 

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)  = 32 = 9.

2) Размещения (без возвращения)  (1,2) (1,3) (2,1) (2,3) (3,1) (3,2)  .

3) Сочетания с возвращением  (1,1) (1,2) (1,3) (2,2) (2,3) (3,3)    

4) Сочетания (без возвращения) (1,2) (1,3) (2,3)      .

Пример. Задача о выборке бракованных деталей.

В партии из N одинаковых деталей M бракованных. Выбирается (не возвращая) n деталей. Какова вероятность того, что среди них окажется ровно m бракованных?

Общее количество случаев (сочетания из N деталей по n) равно . Мы выбираем m бракованных деталей среди M бракованных, но и одновременно выбираем (n-m) деталей без брака среди N-M деталей без брака. Тогда, по основному принципу комбинаторики, такому выбору благоприятствует   случаев. Поэтому искомая вероятность равна .

Геометрическая вероятность

Формула классической вероятности применяется только в схеме случаев, что встречается довольно редко. Отношение    Р(А)= NA/N   представляет собой «долю» благоприятных исходов среди всех возможных исходов. Аналогичным образом подсчитывают вероятность события в некоторых более сложных случаях, когда имеется бесконечное число равновозможных исходов.

Событие А – волчок касается плоскости точкой из окрашенного сектора.

Множество точек на ободе в окрашенном секторе имеет мощность континуума. Делим всю окружность на N маленьких одинаковых дуг. Число дуг на окружности, принадлежащих окрашенному сектору, пусть равно NA

.

В общем случае имеется мера  mes соответствующая  (в нашем случае mes= 2) и мера mes А, соответствующая А (в нашем случае mesА = )

 и т.д.

  Пример. Задача о встрече. Два студента договорились встретиться от 10 до 11 часов на определенном месте, причем первый пришедший на место ждет товарища 15 минут и уходит. Какова вероятность встречи?

Выберем начало системы координат в точке (10, 10). Отложим по осям системы координат  x-  время  прихода первого студента, y – время прихода второго студента.

Тогда  множество  |x-y|<1/4, 0<x<1, 0<x<1, 0<y<1

содержит точки (события) встречи студентов. Его мера (площадь) mesA равна 1- (3/4)2 = 7/16. Так как mesW =1, то P(A) = 7/16.

Статистическая вероятность

Формулы классической вероятности и геометрической вероятности справедливы только для случая равновозможных исходов. В действительности мы на практике имеем место с неравновозможными исходами. В этих случаях можно определить вероятность случайного события, используя понятие частоты события. Допустим, что нам требуется определить вероятность того, что в испытании произойдет событие А.  Для этого в  одинаковых условиях проводятся испытания, в каждом из которых возможны два исхода: А и . Частотой события А будем называть отношение числа NA испытаний, в которых зафиксировано событие А к общему  числу N испытаний.

Вероятностью события А называется предел частоты события А при неограниченном увеличении числа испытаний n, т.е.        . Так определяется статистическая вероятность события.

Заметим, что по классическому, геометрическому и статистическому определениям для вероятности события P(A) выполнены три основных свойства:

P(A)³0,   2) P(W)=1,   3) P(A1+ …+An) = P(A1) + …+P(An), если A1,   An попарно несовместны. Однако в этих определениях элементарные события предполагаются равновозможными.

А.Н. Колмогоров отказался от предположения равновозможности элементарных событий, ввел сигма-алгебру событий и распространил третье свойство на счетное число событий. Это дало возможность дать аксиоматическое определение вероятности события.

Аксиоматическое определение вероятности (по А.Н.Колмогорову).

Вероятностью P(A) называется числовая функция, заданная на сигма – алгебре событий, удовлетворяющая трем аксиомам:

1) не отрицательность  P(A)³0, "AÎB - сигма – алгебре событий на W

2) нормировка P(W) = 1

3) расширенная аксиома сложения: для любых попарно несовместных событий A1, … An … выполнено

P(A1+ …+An+ …) = P(A1) + …+P(An) +…

            (счетная аддитивность).

Итак, по А.Н. Колмогорову вероятность (вероятностная мера) это числовая неотрицательная нормированная счетно - аддитивная функция (множества – события), заданная на сигма – алгебре событий.

Если W состоит из конечного или счетного числа событий, то в качестве сигма – алгебры B может рассматриваться алгебра S событий. Тогда по аксиоме 3 вероятность любого события A равна сумме вероятностей элементарных событий, составляющих A.

Вероятностным пространством называется тройка (W, B, P).

Свойства вероятности

1) . В самом деле,,  несовместны. По аксиоме 3  .

2) P(Æ) = 0. Так как "A   A+Æ = A, по аксиоме 3  P(A+Æ) = P(A) + P(Æ) = P(A) ÞP(Æ) = 0

3) Если AÌ B, то P(A) £ P(B). Так как B = A+ BA, по аксиоме 3 P(B) = P(A) + P(BA), но по аксиоме 1 P(BA)³0

Пример. Из урны с четырьмя шарами с номерами 1, 2, 3, 4 три раза наугад вынимают шар и записывают его номер а) возвращая шары б) не возвращая шары. Какова вероятность 1) получить   комбинацию 111,  2) из номеров шаров составить возрастающую последовательность?

"Вводная лекция" - тут тоже много полезного для Вас.

В случае а) имеем размещения с возвращением, N = 43, 1),  NA=1, P = ¼3, 2) NA = , так как возрастающую последовательность можно составить всегда из не повторяющихся номеров, P = / 43 .

В случае б) N = ,1) P = 0, так как номера шаров не повторяются, то NA =0, 2) P = 1, так как N = NA = .

Пример. Пять человек садятся в поезд метро, состоящий из пяти вагонов. Какова вероятность того, что они окажутся в разных вагонах?

Общее число элементарных событий равно числу размещений с повторением из пяти элементов по пять N = 55. Число элементарных событий, составляющих А, равно 5! Поэтому Р = 5!/ 55.



[1] Лекции 1,2 написаны по лекциям В.Ф. Панова с добавлением авторского материала и примеров

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Нашёл ошибку?
Или хочешь предложить что-то улучшить на этой странице? Напиши об этом и получи бонус!
Бонус рассчитывается индивидуально в каждом случае и может быть в виде баллов или бесплатной услуги от студизбы.
Предложить исправление
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5076
Авторов
на СтудИзбе
455
Средний доход
с одного платного файла
Обучение Подробнее