Решение задачи Дирихле для круга
Решение задачи Дирихле для круга.
Пусть в плоскости XOY имеется круг радиуса R с центром в начале координат и на его окружности задана функция f(j), где j - полярный угол.
Требуется найти функцию
, которая удовлетворяет уравнению Лапласа

и при 
Запишем уравнение Лапласа в полярных координатах:


Полагаем
Подставляя это соотношение в уравнение Лапласа, получаем:
Рекомендуемые материалы


Таким образом, имеем два уравнения:

Общее решение первого уравнения имеет вид: 
Решение второго уравнения ищем в виде:
. При подстановке получим:


Общее решение второго уравнения имеет вид:
.
Подставляя полученные решения в уравнение
, получим:

Эта функция будет решением уравнения Лапласа при любом k ¹ 0.
Если k = 0, то
следовательно
.
Решение должно быть периодическим, т.к. одно и то же значение будет повторяться через 2p. (Тогда рассматривается одна и та же точка круга.) Поэтому В0 = 0.
Решение должно быть конечным и непрерывным, поэтому D0 = 0.
Ещё посмотрите лекцию "13 Правление Павла I (1796-1801)" по этой теме.
Окончательно получаем: 
При этом: 

Если подставить эти коэффициенты в полученную выше формулу и произвести упрощение, получаем окончательный результат решения задачи Дирихле, который называется интегралом Пуассона.
(Симеон Дени Пуассон (1781 – 1840) – французский математик)




















