Популярные услуги

Газопроводы для сбора нефтяного газа

2021-03-09СтудИзба

10. Газопроводы для сбора нефтяного газа

Для сбора нефтяного газа и передачи его потребителям на площадях нефтяных месторождений  сооружают систему газопроводов и компрессорные станции.

При самотечной системе сбора с индивидуальным замерно-сепарационным оборудованием газовые линии берут свое начало у сепараторов, т.е. у устьев скважин. При герметизированной напорной системе нефтегазосбора начало газовых линий перемещается к групповым замерным установкам, или к ДНС, или к установкам подготовки нефти и протяженность газовых линий на месторождениях резко сокращается.

По назначению газопроводы (рис.31) подразделяются на: подводящие газопроводы 1, сборные коллекторы 2 и нагнетательные газопроводы 3.

Подпись: 

Рис. 31. Схема газосборных коллекторов
а) линейная; б) лучевая; в) кольцевая
Г – групповая замерная установка; Ш – шлейфы или выкид;
1–подводящие газопроводы; 2–сборные коллекторы; 3–нагнетательные линии; 4-сепараторы



Нагнетательные газопроводы берут свое начало у компрессорных станций и служат для: 1)подачи газа в газовую шапку продуктивных пластов с целью поддержания давления и продления фонтанирования скважин; 2) подачи газа через газораспределительные будки к устьям компрессорных скважин; 3)подачи газа дальним потребителям; 4) подачи газа на ГПЗ или газофракционирующую установку (ГФУ).

Форма газосборного коллектора зависит от конфигурации площади месторождения, его размера и размещения групповых замерных установок или ДНС. Название газосборной системы обычно определяется формой газосборного коллектора: если газосборный коллектор представляет собой одну линию от куста скважин до КС, газосборная система называется линейной (рис.31,а); если газосборные коллекторы сходятся в виде лучей к одному пункту, газосборная система называется лучевой (рис.31,б). При кольцевой системе газосборный коллектор огибает площадь нефтяной структуры и для большей его маневренности в работе на нем делают одну или две перемычки (рис.31,в).

При выборе системы сбора нефтяного газа руководствуются следующими соображениями:

- обеспечение бесперебойности подачи газа;

- маневренности системы, удобства обслуживания газосборных сетей при минимизации расходов на их сооружение и эксплуатацию.

Кольцевая система сбора газа имеет существенное преимущество в том, что, в случае аварии на каком-либо ее участке, можно перекрытием отключающих задвижек обеспечить бесперебойную подачу газа с остальных участков.

10.1. РАСЧЕТ ПРОСТОГО ГАЗОПРОВОДА

Рекомендуемые материалы

При движении реального газа по трубопроводу происходит значительное падение давления по длине в результате преодоления гидравлических сопротивлений. В этих условиях плотность газа уменьшается, а линейная скорость – увеличивается.

Установившееся изотермическое (Т=const) движение газа в газопроводе описывается системой трех уравнений:

1. Уравнение Бернулли, закон сохранения энергии:

dP/grг + u*du/2g + dz + l*dx/d * u2/2g = 0                                               (127)

2. Уравнение состояния:

P =rг*Rг*T*z,                                                                                                          (128)

где  Rг = R/M                                                                                               (129)

Закон сохранения массы, выражающийся в постоянстве массового расхода:

G = rг*u*s = const                                                                                      (130)

При этом следует помнить, что изотермический процесс описывается уравнением Бойля-Мариотта:

Р/r = const                                                                                                   (131)

При выводе расчетной формулы вторым и третьим слагаемыми в уравнении (127) пренебрегают, т.к. считают, что увеличения линейных скоростей в газопроводе не происходит и газопровод проложен горизонтально. При этих допущениях уравнение (127) запишется в виде:

-dP/grг = l*dx/d * u2/2g = 0                                                                           (132)

Определим из (130) линейную скорость и подставим в (132), получаем:

-dP/grг = l*dx/d *G2/2gS2rг2                                                                          (133)

Умножив левую и правую части на rг2 и сократив g, получим:

-rг*dP = l*dx/d *G2/2S2                                                                                 (134)

Из (129) выразим rг и подставим в последнее выражение, получим:

-PdP/z RгT = l*dx/d * G2/2S2 = 0                                                                    (135)

Возьмем интеграл от данного уравнения в пределах от начального давления Р1 до конечного Р2 в газопроводе длиной от 0 до L:

-1/zRгР2Р1PdP = l* G2/2dS2òL0dx                                                                 (136)

Подставив вместо площади величину S = pd2/4, получим окончательно:

P12 – P22/2 z RгT = l* 16 G2 L / 2 p2d5                                                            (137)

Или           _________________

G = pd2/4Ö(P12 – P22)d/lzRгTL  , кг/с                                                             (138)

Формула (138) является основной для расчета массового расхода газа по трубопроводу. В системе СИ размерности величин следующие:

G – массовый расход газа, кг/с;

d  - внутренний диаметр газопровода, м;

P12,P22 – давление в начале и конце газопровода, соответственно, Па;

l - коэффициент гидравлического сопротивления;

Rг  - газовая постоянная, Дж/(кг*К);

R – универсальная газовая постоянная, равная 8314 Дж/(кмоль*К);

T – абсолютная температура газа, К;

L – длина газопровода, м;

u - линейная скорость газа, м/с;

rг – плотность газа, кг/м3.

По уравнению состояния для газа и воздуха имеем:

Rгrг = Rвrв или Rг = Rвrв/rг = Rв/r,                                                                      (139)

где r = rг/rв – относительная плотность газа по воздуху.

Объемный расход газа, приведенный к стандартным условиям:

Vг = G/rсу = G/r*rв ,                                                                                              (140)

где rсу – плотность газа при С.У.

Подставив в (138) значения Rг и G, получим:

Vг = k0Ö(P12 – P22)d5/lrzTL,                                                                                   (141)

где  k0 = p/4 * 1/rвÖRВ.

При стандартных условиях (t=20°С, Р=760 мм рт. ст.) плотность воздуха rВ=1.205 кг/м3 и  ,            k0=3.87×10-2.

Тогда                                                            (142)

При нормальных условиях (t =0°С, Р=760 мм рт. ст.) плотность воздуха rВ=1.293 кг/м3 и RB=287 Дж/кг×К, k0=3.59×10-2.

 10.1.1. Гидравлический расчет

Значение коэффициента гидравлического сопротивления l рассчитывается в зависимости от режима движения газа и шероховатости труб по тем же формулам, что и для нефтепровода.

Для гидравлических гладких труб l не зависит от шероховатости внутренней поверхности трубы и рассчитывается по формуле:

l=0.067×(158/Re)0.2=0.1844/ Re0.2                                                                   (143)

При квадратичном режиме течения l не зависит от Re, и является функцией относительной шероховатости:

l=0.067×(2D/d)0.2                                                                                                        (144)

По универсальной формуле ВНИИ газа:

l=0.067×(158/Re+2D/d)0.2                                                                                (145)

Значение числа Re для смеси газов:

,                                                                                         (146)

где mС1×m1+ у2×m2+…+ уn×mn – вязкость смеси газов;

mi – вязкость отдельных компонентов газа, кг/м×с;

уi – объемная доля компонента в составе газа;

rС – плотность смеси газов в условиях трубопровода, кг/м3.

,                                                                                    (147)

где r0 – плотность смеси газов при Н.У., кг/м3;

Рср и Р0 – соответственно среднее давление в трубопроводе и барометрическое, Па;

ТСР и Т0 – соответственно средняя температура перекачки и температура абсолютного нуля (273.15).

.                                                                                (148)

Упрощение: по данным ВНИИ газа для новых труб D=0.03мм. Тогда  из (144):

l=0.03817/d0.2.                                                                                                   (149)

При технических расчетах l (с учетом местных сопротивлений) можно принимать l=(1.03-1.05)×lТР.                                                                                                        (150)

Обычно течение газа происходит при высоких скоростях, когда сопротивление определяется только шероховатостью труб (квадратичная зона). Т.к. шероховатость не зависит от диаметра трубопровода, можно считать, что l зависит только от диаметра газопровода.

Одной из формул типа l = ¦(d), получившей широкое распространение, является формула Веймаута:

l=0.009407/                                                                                              (151)

Формула Веймаута (151) может использоваться при ориентировочных расчетах диаметра и пропускной способности простого газопровода. В этом случае расчетные формулы имеют вид:

,                                                                             (152)

.                                                                       (153)

Из формулы (142) можно получить выражение для определения длины L, диаметра d и конечного давления Р2 при известном начальном Р1:

.                                                              (154)

 10.1.2. Изменение температуры газа по длине газопровода

             (155)

где a=kpD/G×CCP;

Т1 – начальная температура газа;

L – расстояние до рассматриваемой точки;

Dh – коэффициент Джоуля-Томсона, °К/МПа.

Первое слагаемое характеризует внешний теплообмен, второе – изменение температуры газа за счет эффекта Джоуля-Томсона, третье – изменение температуры газа в зависимости от его положения по высоте газопровода.

Как следует из этого уравнения, за счет эффекта Джоуля-Томсона температура транспортируемого реального газа может быть даже ниже температуры окружающего грунта.

Когда эффект Джоуля-Томсона не учитывается, Dh=0, и считается, что газопровод горизонтальный, Dz=0, из этого уравнения непосредственно следует формула Шухова для расчета температуры газа в трубопроводе.

При расчете по формуле Шухова температура газа никогда не может быть ниже температуры грунта.

При отсутствии внешнего теплообмена между газом и грунтом, т.е. в условиях идеальной теплоизоляции газопровода, температура транспортируемого газа изменяется только за счет эффекта Джоуля-Томсона и изменения положения центра тяжести потока.

Отмеченные особенности течения реального газа  по газопроводу указывают на необходимость учета эффекта Джоуля-Томсона при определении температуры транспортируемого газа по длине газопровода.

Подпись: 

Рис.32. Изменение давления по длине газопровода
10.1.3.  Изменение давления по длине газопровода

Требуется определить давление в любой точке на расстоянии Хот начала газопровода.

Записав по формуле (138) для двух участков газопровода (от его начала до т. Х и от т. Х до конца газопровода) массовые расходы газа и, учитывая постоянство расхода по длине газопровода, приравняем правые части уравнения, получим:

,           (156)

Откуда

.                                                                                (157)

Отсюда следует, что давление по длине газопровода уменьшается по параболическому закону (рис.32). Из характера кривой вытекает, что по длине газопровода градиент давления  постепенно увеличивается, т.е. гидравлический уклон не является постоянным.

В начале газопровода, когда давление и плотность газа высокие, а удельный объем газа () мал, потери давления в газопроводе незначительны, т.е. градиенты давления малы. По мере удаления газа от начала трубопровода давление падает, а удельный объем газа увеличивается, что приводит к увеличению скорости движения газа и, соответственно, росту потерь давления на трение, пропорциональных квадрату скорости (уравнение Дарси-Вейсбаха).

Т.к. в газопроводах закон падения давления по длине имеет нелинейный характер, то среднее давление определяется как среднеинтегральное (148).

10.2. РАСЧЕТ СЛОЖНОГО ГАЗОПРОВОДА

Сборный коллектор газа большой протяженности (рис.31) представляет собой сложный газопровод: к нему подключено несколько газовых линий от групповых замерных установок. Данный коллектор необходимо прокладывать с изменяющимся диаметром. Диаметры отдельных участков определяют исходя из количества проходящего по ним газа.

Таким образом, при расчете сложных газопроводов их следует разбивать на отдельные участки, равные промежуткам между подключениями к данному газопроводу других газопроводов. Каждый такой участок рассчитывают как простой газопровод. Потеря давления на всем протяжении газопровода  будет равна сумме потерь давлений на всех участках. Тогда давление в конечной точке газопровода можно определить по формуле:

,                                                           (158)

где Рк, РН – соответственно конечное и начальное давления, н/м2;

vn – расходы газа на отдельных участках, млн. м3/сут;

ln – длины отдельных участков, м;

К – коэффициент, равный 0.0343/;

n – число участков;

dк – диаметр конечного участка.

11. ВНУТРЕННЯЯ КОРРОЗИЯ ТРУБОПРОВОДОВ

Ежегодно на нефтепромысловых трубопроводах происходит около 50-70 тыс. отказов. 90% отказов являются следствием коррозионных повреждений. Из общего числа аварий 50-55% приходится на долю систем нефтесбора и 30-35% - на долю коммуникаций поддержания пластового давления.

     42% труб не выдерживают пятилетней эксплуатации, а 17% -даже двух лет. На ежегодную  замену  нефтепромысловых сетей расходуется 7-8 тыс. км труб или 400-500 тыс. тонн стали.

В чем же причина и каков механизм процесса внутренней коррозии трубопроводов, транспортирующих нефть и воду?

11.1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ПРОЦЕССА ЭЛЕКТРОХИМИЧЕСКОЙ КОРРОЗИИ МЕТАЛЛОВ

Коррозия – это разрушение металлов в результате химического или электрохимического воздействия окружающей среды, это окислительно-восстановительный гетерогенный процесс, происходящий на поверхности раздела фаз.

Хотя механизм коррозии в разных условиях различен, по виду разрушения поверхности металла различают:

1. Равномерную или общую коррозию, т.е. равномерно распределенную по поверхности металла. Пример: ржавление железа, потускнение серебра.

2. Местную или локальную коррозию, т.е. сосредоточенную на отдельных участках поверхности. Местная коррозия бывает различных видов:

· В виде пятен – поражение распространяется сравнительно неглубоко и занимает относительно большие участки поверхности;

· В виде язв – глубокие поражения локализуются на небольших учасках поверхности;

· В виде точек (питтинговая) - размеры еще меньше язвенных разъеданий.

3. Межкристаллитную коррозию – характеризующуюся разрушением металла по границам кристаллитов (зерен металла). Процесс протекает быстро, глубоко  и вызывает катастрофическое разрушение.

4. Избирательную коррозию – избирательно растворяется один или несколько компонентов сплава, после чего остается пористый остаток, который сохраняет первоначальную форму и кажется неповрежденным.

5. Коррозионное растрескивание происходит, если металл подвергается постоянному растягивающему напряжению в коррозионной среде. КР может быть вызвано абсорбцией водорода, образовавшегося в процессе коррозии.

По механизму протекания различают химическую и электрохимическую коррозию.

Химическая коррозия характерна для сред не проводящих электрический ток.

Коррозия стали в водной среде происходит вследствие протекания электрохимических реакций, т.е. реакций сопровождающихся протеканием электрического тока. Скорость коррозии при этом возрастает. 

Электрохимическая коррозия возникает в результате работы множества макро- или микрогальванопар в металле, соприкасающемся с электролитом.

Причины возникновения гальванических пар в металлах:

· Соприкосновение двух разнородных металлов;

· Наличие в металле примесей;

· Наличие участков с различным кристаллическим строением;

· Образование пор в окисной пленке;

· Наличие участков с различной механической нагрузкой;

· Наличие участков с неравномерным доступом активных компонентов внешней среды, например, воздуха,

и, таким образом, образуются гальванические элементы, микропары, то есть образуются анодные и катодные участки. Анодом является металл с более высоким отрицательным потенциалом, катодом является металл с меньшим потенциалом. Между ними возникает электрический ток.

Процесс коррозии можно представить следующим образом.

На аноде:    (реакция окисления)

                                                          Fe - 2 e  ® Fe 2+                                                      (1)

На анодных участках атомы железа переходят в раствор в виде гидратированных катионов Fe 2+, то есть происходит анодное растворение металла и процесс коррозии распространяется вглубь металла.

Оставшиеся свободные электроны перемещаются по металлу к катодным участкам.

На катоде:  (реакция восстановления)

2 Н+ + 2 e ®  2 Нaдс.                                                (2)

При рН < 4,3 происходит разряд всегда присутствующих в воде ионов водорода и образование атомов водорода с последующим образованием молекулярного водорода:

Н + Н ®  Н2 ­.                                                                  (3)

При рН > 4,3 доминирует взаимодействие электронов с кислородом, растворенным в воде:

О2 + 2 Н2О + 4 е ® 4 ОН--                                                                                     (4)

Катионы Fe 2+ и ионы ОН-- взаимодействуют с образованием закиси Fe:

Fe2+ + 2 OH--® Fe(OH)2.                                       (5)

Если в воде достаточно свободного кислорода, закись Fe может окислиться до гидрата окиси Fe:

4Fe(OH)2  + О2 + 2 Н2О  ® 4Fe(OH)3¯ ,                             (6)

 который выпадает в виде осадка.

Итак, в результате протекания электрического тока анод разрушается: частицы металла в виде ионов Fe 2+ переходят в воду или эмульсионный поток. Анод, разрушаясь, образует в трубе свищ.

Рассмотрим, от каких факторов зависит скорость коррозии.

11.1.1. ФАКТОРЫ КОРРОЗИОННОГО РАЗРУШЕНИЯ ТРУБОПРОВОДОВ

1. Температура и рН воды

Можно выделить 3 зоны:

1) рН < 4,3 . Скорость коррозии чрезвычайно быстро возрастает с понижением рН. (Сильнокислая среда).

2) 4,3 < рН < 9-10. Скорость коррозии мало зависит от рН.

3) 9-10 < рН < 13. Скорость коррозии убывает с ростом рН и коррозия практически прекращается при рН = 13. (Сильнощелочная среда).

В первой зоне на катоде протекает реакция разряда ионов водорода и образование молекулярного водорода (реакции 2,3); во второй и третьей зоне - идет реакция образования ионов гидроксила ОН-- (реакция 4).

Повышение температуры ускоряет анодные и катодные процессы, так как увеличивает скорость движения ионов, а, следовательно, и скорость коррозии.

2. Содержание кислорода в воде

Как было отмечено выше, железо труб подвергается интенсивной коррозии в кислой среде при рН < 4,3 и практически не корродирует при рН > 4,3, если в воде отсутствует растворенный кислород.

Если в воде есть растворенный кислород, то коррозия железа будет идти и в кислой, и в щелочной среде.

3. Парциальное давления СО2

Огромное влияние на разрушение металла труб коррозией  оказывает свободная углекислота (СО2), содержащаяся в пластовых водах. Известно, что при одинаковом рН коррозия в углекислотной среде протекает более интенсивно, чем в растворах сильных кислот .

На основании исследований установлено, что системы с РСО2 £0,02 МПа считаются коррозионно-неопасными, при 0,2 ³РСО2 >0,02 - возможны средние скорости коррозии, а при РСО2> 0,2 МПа - среда является высококоррозивной.

Объяснение влияния СО2 на коррозионную активность среды связано с формами нахождения СО2 в водных растворах. Это:

- растворенный газ СО2;

- недиссоциированные молекулы Н2СО3;

- бикарбонат ионы НСО3-;

- карбонат-ионы СО32-.

В равновесных условиях соблюдается баланс между всеми формами:

СО2 + Н2О Û Н2СО3 Û Н+ + НСО3- Û 2Н+ + СО32- .                                        (7)

СО2 может влиять по двум причинам:

1. Молекулы Н2СО3 непосредственно участвуют в катодном процессе :

H2CO3 + e  ® Надс + HCO3-                                     (8)

2. Катодному восстановлению подвергается бикарбонат-ион:

2НСО3- + 2e ® Н2­ + СО32-                                          (9)   

3. Н2СО3 играет роль буфера и поставляет ионы водорода Н+ по мере их расходования в катодной реакции (2):

H2CO3   Û   H+  +  HCO3-                                                          (10)

При взаимодействии Fe2+ c НСО3- или Н2СО3 образуется осадок карбоната железа FeСО3:

Fe2+ + HCO3 - ®FeCO3 + H+                                                           (11)

Fe2+ + H2CO3 ® FeCO3 + 2H+                                      (12)

Все исследователи обращают внимание на огромное влияние продуктов коррозии железа на скорость процесса коррозии.

4FeCO3 + O2 ® 2Fe2O3 + 4CO2­                                   (13)   

Эти осадки являются полупроницаемыми для коррозионно-агрессивных компонентов среды и замедляют скорость разрушения металла.

Таким образом, можно выделить две характерные особенности действия диоксида углерода.

1. Увеличение выделения водорода на катоде.

2. Образование карбонатно-оксидных пленок на поверхности металла.

4. Минерализация воды

Растворенные в воде соли являются электролитами, поэтому увеличение их концентрации до определенного предела повысит электропроводность среды и, следовательно, ускорит процесс коррозии.

Уменьшение скорости коррозии связано с тем, что:

1)  уменьшается растворимость газов, СО2 и О2, в воде;

2) возрастает вязкость воды, а, следовательно, затрудняется диффузия, подвод кислорода  к поверхности трубы (к катодным участкам, реакция 4).

5. Давление

Повышение давления увеличивает процесс гидролиза солей и увеличивает растворимость СО2. (Для предсказания последствий - см. пп. 3 и 4).

6. Структурная форма потока

Относительные скорости течения фаз (газа и жидкости) в газожидкостных смесях (ГЖС) в сочетании с их физическими свойствами (плотностью, вязкостью, поверхностным натяжением и т.д.) и размерами и положением в пространстве трубопровода определяют формирующиеся в них структуры двухфазных (многофазных) потоков. Можно выделить семь основных структур: пузырьковая, пробковая, расслоенная, волновая, снарядная, кольцевая и дисперсная.

Каждая структура ГЖС влияет на характер коррозионного процесса.

Вопрос о связи коррозионных процессов в трубопроводах со структурами потоков, транспортируемых по ним ГЖС, всегда интересовал и продолжает интересовать специалистов по коррозии. Имеющаяся информация о связи структур течения ГЖС с коррозией является еще недостаточно полной.

Но тем не менее известно, например, что кольцевая (дисперсно-кольцевая) структура ГЖС снижает интенсивность коррозии трубопровода; снарядная (пробково-диспергированная) может способствовать коррозионно-эрозионному износу трубопровода по нижней образующей трубы на восходящих участках трассы, а расслоенная (плавная расслоенная) - развитию общей и питтинговой корозии в зоне нижней образующей трубы и в, так называемых, "ловушках" жидкости (особенно при выделении соленой воды в отдельную фазу).

6. Биокоррозия, коррозия под действием микроорганизмов.

С этой точки зрения имеют значение сульфат-восстанавливающие анаэробные бактерии (восстанавливают сульфаты до сульфидов), обычно обитающие в сточных водах, нефтяных скважинах и продуктивных горизонтах.

В результате деятельности сульфат-восстанавливающих образуется сероводород Н2S, который хорошо растворяется в нефти и в дальнейшем взаимодействует с железом, образуя сульфид железа, выпадающий в осадок:

Fe + H2S ® FeS¯ + H2­                              (14)

Под влиянием Н2S изменяется смачиваемость поверхности металла, поверхность становится гидрофильной, то есть легко смачивается водой, и на поверхности трубопровода образуется тонкий слой электролита, в котором и происходит накопление осадка сульфида железа FeS.

Сульфид железа является стимулятором коррозии, так как участвует в образовании гальванической микропары Fe - FeS, в которой является катодом (то есть разрушаться будет Fe как анод).

Некоторые ионы, например ионы хлора, активируют металлы. Причиной активирующей способности ионов хлора является его высокая адсорбируемость на металле. Хлор-ионы вытесняют пассиваторы с поверхности металла, способствуют растворению пассивирующих пленок и облегчают переход ионов металла в раствор. Особенно большое влияние ионы хлора оказывают на растворение железа, хрома, никеля, нержавеющей стали, алюминия.

Итак, коррозионную агрессивность воды характеризуют природа и количество растворенных солей, рН, жесткость воды, содержание кислых газов.

Степень влияния этих факторов зависит от температуры, давления, структуры потока и количественного соотношения воды и углеводородов в системе.

Способы предупреждения внутренней коррозии трубопроводов подразделяются на  технические (механические),  химические и технологические.

11.2. ЗАЩИТА ТРУБОПРОВОДОВ ОТ ВНУТРЕННЕЙ КОРРОЗИИ

Существующая схема эксплуатации большинства месторождений с поддержанием пластового давления за счет закачки в пласт сточной воды  способствует повышению агрессивности среды, в которой "работают" трубы при добыче и транспортировке сырья.

Очевидно, что применяемые в настоящее время методы ингибиторной защиты не могут решить проблемы полностью. Добиться повышения надежности и снижения аварийности промысловых трубопроводов можно только за счет применения комплексных мер. Среди них основной, по-видимому, можно считать смену материала труб на коррозионно-устойчивый, а также применение труб с антикоррозионным покрытием, то есть технические способы защиты.

11.2.1. Технические способы защиты

Кардинальным средством борьбы с коррозионным повреждением стальных труб является замена их на пластмассовые.

Пластмассовые трубы могут быть двух видов:

- на малые давления до 1,0 МПа - из полиэтилена низкого давления (ПНД), а также из полипропилена, поливинилхлорида, полибутена, акрилонитрилбутадиона;

- на давление 4,0-6,0 МПа и выше -  из композитных материалов: стеклопластиковые, бипластмассовые, армированные, термопластичные.

Полиэтиленовые трубы имеют в 7 раз меньшую массу, чем стальные. Для их монтажа не требуется тяжелого подъемно-транспортного оборудования. Они обладают большой эластичностью, высокой гладкостью, вследствие чего их пропускная способность увеличивается на 2-3%.

Полиэтиленовые трубы могут использоваться для транспорта минерализованных вод любой агрессивности (ГОСТ 18599-83).

Что касается транспорта нефти, нефтяной эмульсии, газового конденсата по напорным трубопроводам из полиэтиленовых труб, то здесь следует учитывать эффект набухаемости полиэтилена.

С увеличением концентрации сорбированной нефти снижается прочность полиэтилена. Например, при увеличении концентрации нефти в полиэтилене до 5% его прочность снижается на 10%.

Таким образом, основной недостаток полиэтиленовых труб - малая прочность. Поэтому во всем мире ведутся исследования по созданию пластмассовых труб, c  одной стороны, химически стойких против агрессивных сред, с другой - обладающих прочностью, соизмеримой со стальными трубами.

Решением этой проблемы являются трубы из композитных материалов: стеклопластиков, из армированных термопластов.

Теплопроводность стеклопластика в 250 раз меньше, чем у металла, то есть он обладает повышенными теплоизоляционными характеристиками.

Для предотвращения внутренней коррозии нефтесборных трубопроводов в ОАО "Татнефть", например,  выбраны следующие направления:

- для перекачки беспарафинистых серосодержащих нефтей используются металло-пластмассовые трубы, коррозионно-стойкие гибкие трубы производства КВАРТ (г.Казань);

- для парафинистых нефтей применяются трубы со специальным защитным покрытием, выдерживающем температуру эксплуатации до 150 оС.

ОАО "Татнефть" имеет опыт применения стеклопластиковых труб Нидерландской фирмы Wavin (Вавин).

С 1988г. стеклопластиковые трубы безотказно работают в качестве НКТ, диаметр 89 мм. Положительные результаты получены по системе нефтесбора: диаметр 159 мм и давление 2,8 МПа. Отрицательные результаты получены при испытании стеклопластиковых труб в системе ППД в качестве разводящего водовода (давление 12,5 МПа): не выдержали давления клеевые соединения, повороты (колена).

В основе последней разработки компании Ameron (Нидерланды), специализирующейся на выпуске стеклопластиковых труб для нефтяной промышленности - технология стальной полосы, применяемая компанией  British Aerospace  для изготовления высокопрочных оболочек двигателей космических ракет. Новый материал SSL - это ламинированный композитный материал, который сочетает преимущества высокопрочной стали с коррозионной стойкостью стекловолокна. Из него производятся легкие, гладкие, антикоррозионные трубы, выдерживающие давление почти до 40 МПа - для малых диаметров и до 4 МПа - для больших диаметров и температуру до 110 оС.

Трубы  Bondstrand SSL  состоят из слоев стальной ленты, заключенных внутри эпоксидной, армированной стекловолокном, оболочки. Они могут использоваться для сооружений выкидных линий, линий нефтесбора, подводных трубопроводов и трубопроводов для нагнетания воды в скважины, а также как НКТ и обсадные трубы.

Толщина стенки трубы Bondstrand SSL ( в несколько раз) меньше толщины стенки обычной стекловолокнистой трубы, что обеспечивает более высокую пропускную способность (при одинаковом давлении).

Соединительная система Койл-Лок (Coil-Lock) - конусное резьбовое соединение с пластичной спиральной шпонкой - обеспечивает трубам Bondstrand SSL прочность и герметичность, быстроту монтажа. Новые трубы имеют еще одно ценное свойство: электропроводный стальной слой позволяет осуществлять электромониторинг трубопровода, уложенного под землей.

Минимальный срок эксплуатации таких труб в условиях Сибири - 20 лет, стандартный срок - более 50 лет.

В России пионером в области применения труб Bondstrand SSL является компания "Славнефть-Мегионнефтегаз". Она начала их использовать в 1995 г. На 2000 г. российские компании заказали фирме Ameron 262 км таких труб. В Казахстан за последние 2 года поставлено 116 км труб.

Потребителями являются Тюменская Нефтяная компания, "Мегионнефтегаз", "Черногорнефть", "Ваньеганнефть" и т.д.

Задача надежности защиты от внутренней коррозии решается с помощью технологии футерования трубных плетей полиэтиленом и специальной конструкцией стыка. Однако,  единой методики выбора типа покрытия в зависимости от свойств транспортируемой среды и условий эксплуатации трубопровода не выработано.

В начале 80-х годов в связи с ростом коррозионной активности добываемых жидкостей и увеличением протяженности трубопроводов стали применяться гибкие трубы.

    В первую очередь гибкие трубы начали применяться в системе ППД на месторождениях с особо агрессивными средами, содержащими:

- сероводород                                                                      до  600 мг/л;

- углекислый газ                                                                 до 1200 м/л;

- высокоминерализованные растворы ;

- активные ионы хлора (Cl-) ;

- cвободный кислород .

Срок службы стальных трубопроводов в этих условиях не превышал 1 года, а срок промысловой наработки гибких труб (в АО «Самаранефтегаз») приближается к 15 годам.

Техническая характеристика гибких труб для выкидных линий нефтяных скважин, водоводов пластовых сточных вод и технологических трубопроводов приведена в табл.9.

Таблица 9

Техническая характеристика гибких труб «Росфлекс»

Показатели

Внутренний диаметр, мм

50

75

100

150*

Рабочее давление, Мпа

4

10

15

20

4

10

15

20*

4

10

20*

4

Наружный диаметр, мм

82

85

86

86

110

113

114

115

130

133

135

180

Масса 1 м, кг

6.0

7.5

7.8

8.0

8.0

9.5

10

10.5

10.5

12.0

12.5

16.0

Длина секции, м, не более

350

220

150

100

Тип соединения

Фланцевый или сварной

*Готовится производство.

Трубы выпускаются внутренним диаметром 50, 75 и 100 мм на рабочее давление до 20 МПа, массой 1м не более 12 кг, максимальная длина секции до 350 м. Готовится производство труб диаметром 150 мм.

Гибкие трубы состоят из внутренней полимерной камеры 1, армирующих слоев 2, наружной полимерной оболочки 3 и концевых соединений 4 (рис.33).

Гибкие трубы рассчитаны на траншейную прокладку и прокладку по поверхности земли.

Кроме региона Средней Волги гибкие трубы работают и в других климатических   условиях при температуре окружающей среды от –450 до +500 С : в Западной Сибири, республики Коми, на о.Сахалин. Гибкие водоводы и выкидные линии работают также в Казахстане, на полуострове Мангышлак и в Азербайджане на морском месторождении.

Рис.33. Конструкция гибкой трубы

 11.2.2. Технологическая защита трубопроводов

На нефтяных месторождениях преимущественное развитие получили однотрубные системы сбора продукции скважин. Возрастание объемов попутно добываемой воды приводит к перегрузке сборных трубопроводов и снижению их коррозионной надежности,  сроков  эксплуатации.

Технико-экономические показатели и надежность систем сбора нефти тесно связаны с техникой и технологией разделения продукции скважин.

Как показано в предыдущем материале, в качестве основного принципа технологии первичного (предварительного) разделения продукции скважин на современном этапе  выделяется дифференцированный или путевой сброс свободной воды, то есть отбор воды во всех точках технологической схемы, где она выделяется в виде свободной фазы.

Это позволяет снизить нагрузки на сепараторы последующий ступеней, отстойники, печи, насосное оборудование, повысить их эксплуатационную надежность, а иногда и исключить из технологической схемы часть перечисленного оборудования.

Путевой сброс воды из продукции скважин может осуществляться по отдельным коллекторам, вблизи наиболее обводненных кустов скважин, на пониженных участках трассы, где скапливается свободная вода, вблизи существующих кустовых насосных станций системы ППД.

Основным требованием к технологии путевого сброса воды является его осуществление без применения сложного технологического оборудования, требующего присутствия обслуживающего персонала, и при естественной температуре продукции скважин. При необходимости для разрушения эмульсии продукция может обрабатываться реагентом-деэмульгатором. Степень  предварительного обезвоживания  нефти при путевом сбросе должна соответствовать агрегативной устойчивости эмульсии  (на входе в установку), чтобы при дальнейшем транспорте не происходило выделение свободной воды  из эмульсии или оно было минимальным.

11.3. Особенности коррозии трубопроводов в условиях Западной Сибири

В Западной Сибири для нефтесборных трубопроводов большого диаметра характерны коррозионные разрушения в форме протяженных канавок, расположенных строго по нижней образующей труб.  В начальной стадии разрушение представляет собой следующие друг за другом язвенные углубления, которые в последующем сливаются в непрерывную канавку шириной 20-60 мм и длиной 5-20 м.

Анализ факторов, влияющих на внутреннюю коррозию трубопроводов показал, что:

- локальные коррозионные разрушения нижней части труб и аварийные порывы нефтепроводов стали проявляться, когда обводненность  нефти возросла до 50%, нефтяные эмульсии стали неустойчивыми и из них начала выделяться вода в виде отдельной фазы;

- пластовая вода слабокоррозивна: минерализация хлоркальциевых вод невелика и составляет 20-40 г/л, рН воды нейтральный, температура 40 оС;

- в водной фазе нефтяной эмульсии содержится до 250 мг/л двуокиси углерода и биогенный сероводород в количестве 2-10 мг/л;

- в попутных нефтяных газах  содержится до 6% масс. СО2   и сероводорода 1,5 мг/м3;

- нефти Западной Сибири парафинистые, легкие и маловязкие, характеризуются невысокой устойчивостью нефтяных эмульсий. Таким образом, и со стороны нефти и газа особой разрушительной коррозии не ожидается.

Каким же образом в не очень коррозивной среде проявляется, причем только в нижней части труб, локальная коррозия металла?

Большинство исследователей, занимавшихся изучением коррозии стали в подобных условиях, считают, что коррозионный процесс разрушения металла протекает по углекислотному механизму.

Для Западной Сибири характерно выпадение солей из водной фазы продукции скважин, что, в принципе, возможно вследствие действия следующих факторов (или их комбинаций):

- уменьшение общего давления в системе;

- изменения температуры;

- изменения химического состава воды, что возможно или при смешении вод различного состава, или в результате коррозии, когда вода обогащается ионами железа.

В этих условиях процесс углекислотной коррозиии протекает следующим образом.

На внутренней поверхности трубопровода происходит отложение карбоната кальция СаСО3. В некоторых местах защитная пленка осадка СаСО3 может отслоиться. Это происходит под действием или механических факторов, таких как абразивное действие взвешенных частиц, гидравлические удары , вибрации трубопровода,  вызванные прохождением газовых пробок и др., или в результате механо-химического растворения пленки в местах напряженного состояния трубопроводов.

Обнаженный участок металла и остальная поверхность трубы, покрытая осадком, образуют гальваническую макропару, где металл является анодом, а поверхность трубы - катодом. Начинается интенсивный процесс коррозии, его скорость может достигать 5-8 мм/год.

Приэлектродный слой обогащается ионами железа Fe 2+  (реакция 1) и создаются условия для осаждения карбоната железа FeCO3 (реакции 11,12), который блокирует коррозию.

Участки язв, где произойдет отслоение FeCO3, вновь превращаются в активные аноды.

Однако, перечисленные воздействия: гидравлические удары, вибрации, механо-химическое растворение, носят непредсказуемый характер и не объясняют локализации коррозионного разрушения в нижней части труб.

Феномен локализации коррозионного разрушения по нижней образующей трубы может быть обусловлен особенностями гидродинамики течения газожидкостных потоков (трехфазных нефтяных эмульсий) по трубопроводам.

В условиях недостаточно высокой скорости потока (0,1-0,9 м/с) формируется расслоенная структура течения ГЖС, то есть вода выделяется в отдельную фазу. Поверх воды будет двигаться нефтяная эмульсия и газ.

На границе раздела жидких фаз возникнут волны, в частности из-за разницы в вязкости соприкасающихся фаз. При перемещении этих волн вдоль течения транспортируемой смеси на границе раздела жидких фаз наблюдаются вторичные явления: отрыв капель воды и их вращение, что приводит к  возникновению вихревых дорожек из множества капель воды строго вдоль нижней образующей трубы (рис.34).

.

Рис.34. Схема образования вихрей на волновой поверхности раздела фаз нефть-вода

Часть присутствующих в водной фазе механических примесей (карбонатов и сульфидов железа, песка и глины) попадает во вращающиеся капли воды и участвует в постоянном гидроэрозионном воздействии на защитную пленку из карбонатов в нижней части трубы. Поэтому по нижней образующей трубы происходит постоянное механическое удаление железокарбонатной пленки.

Таким образом обеспечивается постоянное функционирование гальванической макропары металл - труба, покрытая осадком солей.

Аномально-высокие скорости коррозии (5-8 мм/год) объясняются соотношением площадей электродов: небольшой по площади анод в нижней части трубы в виде дорожки и катод, в десятки раз превышающий по площади анодный электрод.

Методы предотвращения этого вида локальной коррозии также должны быть нетрадиционными и исходить из рассмотренного механизма. Применение ингибиторов коррозии здесь малоэффективно, поскольку защитная пленка ингибитора будет непрерывно удаляться с металла. Замена малостойких в условиях углекислотной коррозии сталей на более стойкие неприемлема по технико-экономическим соображениям, поскольку протяженность сети нефтепроводов в Западной Сибири огромна.

Задача предупреждения коррозии по нижней образующей трубы может быть решена только при учете гидравлических особенностей течения трехфазных потоков.

Прежде всего уже на стадии проектирования обустройства таких месторождений (или в процессе их эксплуатации) необходимо заложить расчетно-уменьшенные диаметры нефтепроводных труб, в которых скорость движения нефтеводогазового потока поддерживалась бы на оптимальном уровне, то есть чтобы из нефтяных эмульсий не выделялась вода в качестве отдельной фазы.

Если этого избежать нельзя, например, из-за высокой обводненности добываемой нефти, то необходимо предусмотреть в проекте разработки месторождения, при наступлении повышенной обводненности нефти, постоянный (путевой) сброс выпавшей на отдельных участках нефтепровода воды.

Можно периодически удалять скапливающуюся в пониженных участках нефтепровода воду с помощью разделительных пробок и скребков.

Опасными, с точки зрения коррозионной агрессии, являются пробковый и расслоенный режимы течения.

В момент прохождения "пробки" газа по участку трубопровода на нем возникает сильная вибрация. Периодичность прохождения газовых "пробок" может колебаться от 1-2 за час до 15-25 за минуту.

В результате этого нефтесборный коллектор может испытывать циклические  нагрузки.

При циклическом нагружении металла упруго-пластические деформации, локализованные в концентраторе напряжений, приводят к интенсивной локальной механо-химической коррозии и развитию коррозионно-усталостной трещины. Коррозионные повреждения внутренней поверхности трубопровода вначале образуются по электрохимическому механизму, в дальнейшем они также могут выступать концентраторами напряжений.  Этим и объясняются аномально высокие скорости коррозии (9 мм/год), наблюдаемые на многих

Если проблема защиты внутрипромысловых трубопроводов от коррозионно-механического растрескивания появилась впервые, то для магистральных нефтепроводов в этом направлении накоплен большой опыт,  так как для них - это характерный вид коррозионного разрушения.

К наиболее распространенным способам защиты трубопроводов от коррозионно-механического растрескивания относятся:

- ингибиторная защита;

Рекомендация для Вас - 10.1 - Кинематика плоский движений жидкости.

- применение гальванических и лакокрасочных покрытий;

- легирование трубной стали;

- защита  с помощью оксидных и фосфатных покрытий.

Эффективным методом защиты является ингибирование, так как ингибиторы тормозят процесс коррозионного зарождения трещин на поверхности металла. Кроме того, многие ингибиторы способны проникать в вершину зародившейся трещины и сдерживать ее развитие. Поэтому  важно правильно подобрать ингибитор. Он должен не только существенно замедлять равномерную и локальную коррозию, но и эффективно подавлять зарождение и развитие коррозионно-усталостных трещин.

Из других методов защиты реально осуществимым является термообработка труб. Однако режимы термообработки для конкретных видов труб должны выбираться с учетом особенностей коррозионной среды и механизма коррозии, характерных для конкретного месторождения. А это требует проведения дополнительных исследований.

Таким образом, механизм коррозии углеродистой стали в средах с СО2 чрезвычайно сложен. В зависимости от условий он может вести к общей или локальной коррозии, в том числе в форме язвы, питтинга, канавочной коррозии и коррозионного растрескивания. Поэтому, в зависимости от механизма процесса коррозии, должны быть применены соответствующие способы защиты.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5183
Авторов
на СтудИзбе
435
Средний доход
с одного платного файла
Обучение Подробнее