Популярные услуги

КМ-6. Динамические массивы. Семинар - выполню любой вариант!
КМ-2. Разработка простейших консольных программ с использованием ООП + КМ-4. Более сложные элементы ООП - под ключ!
Любая задача на C/C++
Одно любое задание в mYsql
Сделаю ваше задание: Лабораторная работа на Pascal / Lazarus
Любой тест по базам данных максимально быстро на хорошую оценку - или верну деньги!
Любой реферат по объектно-ориентированному программированию (ООП)
Оба семинара по программированию под ключ! КМ-2. Разработка циклических алгоритмов + КМ-3. Функции и многофайловые программы в Си
Повышение уникальности твоей работе
Все письменные КМ под ключ за 3 суток! (КМ-6 + КМ-7 + КМ-8 + КМ-9 + КМ-10)

Жесткие магнитные диски

2021-03-09СтудИзба

1.4 Жесткие магнитные диски

Конструкция жесткого магнитного диска (ЖМД) представляется в виде камеры, внутри которой находится один или более дисковых носителей насаженных на один шпиндель и блок головок чтения/записи с их общим приводящим механизмом. Рядом с камерой носителей и головками располагаются схемы управления головками, дисками и называются контроллером (интерфейсным адаптером).

На диске располагаются концентрические дорожки, равномерно распределенные по всему носителю. Дорожки, находящиеся одна под другой на носителе, называются цилиндром. Операции чтения/записи производятся подряд над всеми дорожками цилиндра, после чего головки перемещаются на новую позицию. Воздух внутри камеры максимально очищен от пыли. Диски вращаются постоянно, а скорость вращения от 4500 до 15000 об/мин.

Для позиционирования головок чтения/записи применяются шаговые и линейные двигатели механизмов позиционирования и механизмы перемещения головок в целом.

Парковкой головок называют процесс их перемещения в безопасное положение. Это - парковочное положение головок в той области дисков, где ложатся головки. Там, обычно, не записано никакой информации, кроме серво - это специальная посадочная зона. Для фиксации привода головок в этом положении в большинстве ЖМД используется маленький постоянный магнит, когда головки принимают парковочное положение - этот магнит соприкасается с основанием корпуса и удерживает позиционер головок от ненужных колебаний. При запуске накопителя схема управления линейным двигателем отрывает фиксатор, подавая на двигатель, позиционирующий головки, усиленный импульс тока. В ряде накопителей используются и другие способы фиксации - основанные, например, на воздушном потоке, создаваемом вращением дисков. В настоящее время на всех современных устройствах парковка головок накопителей производится автоматически внутренними схемами контроллера при отключении питания и не требует для этого никаких дополнительных программных операций.

Основные физические и логические параметры ЖМД. Наиболее распространены накопители с диаметром дисков 2.2, 2.3, 3.14 и 5.25 дюймов. Диаметр дисков определяет плотность записи на дюйм магнитного покрытия.

Число поверхностей - определяет количество физических дисков нанизанных на шпиндель (наиболее распространены устройства с числом поверхностей от 2 до 5).

Число цилиндров - определяет сколько дорожек (треков) будет располагаться на одной поверхности (все накопители емкостью более 1 Гигабайта имеют число цилиндров более 1024).

Число секторов - общее число секторов на всех дорожках всех поверхностей накопителя.

Рекомендуемые материалы

Число секторов на дорожке - общее число секторов на одной дорожке  (для современных накопителей показатель условный, т.к. они имеют неравное число секторов на внешних и внутренних дорожках, скрытое от системы и пользователя интерфейсом устройства).

Частота вращения шпинделя - определяет, сколько времени будет затрачено на последовательное считывание одной дорожки или цилиндра.

Время перехода от одной дорожки к другой - обычно составляет от 3,5 до 5 миллисекунд, а у быстрых моделей может быть от 0,6 до 1 миллисекунды.       

Время успокоения головок - время, проходящее с момента окончания позиционирования головок на требуемую дорожку до момента начала операции чтения/записи.

Время установки или время поиска - время, затрачиваемое устройством на перемещение головок чтения/записи к нужному цилиндру из произвольного положения.

Среднее время установки или поиска - усредненный результат большого числа операций позиционирования на разные цилиндры, часто называют средним временем позиционирования.

Время ожидания - время, необходимое для прохода нужного сектора к головке, усредненный показатель – среднее время ожидания, получаемое как среднее от многочисленных тестовых проходов.

Время доступа - суммарное время, затрачиваемое на установку головок и ожидание сектора.

Среднее время доступа к данным - время, проходящее с момента получения запроса на операцию чтения/записи от контроллера до физического осуществления операции - результат сложения среднего время поиска и среднего времени ожидания.

Скорость передачи данных (пропускная способность) - определяет скорость, с которой данные считываются или записываются на диск после того, как головки займут необходимое положение. Различают две разновидности скорости передачи - внешняя и внутренняя.

Внешняя скорость передачи данных - с какой скоростью данные считываются из буфера, расположенного на накопителе в оперативную память компьютера.

Внутренняя скорость передачи данных - скорость передачи данных между головками и контроллером накопителя и определяет общую скорость передачи данных в тех случаях, когда буфер не используется или не влияет (когда загружается большой графический или видеофайл). Внутренняя скорость передачи данных очень зависит от частоты вращения шпинделя.

Размер кеш-буфера контроллера. Встроенный в накопитель буфер выполняет функцию упреждающего кэширования и призван сгладить большую разницу в быстродействии между дисковой и оперативной памятью компьютера. Выпускаются накопители с 128, 256 и 512 килобайтным буфером.

Средняя потребляемая мощность. Современные накопители на ЖМД потребляют от 5 до 15 Ватт.

Среднее время наработки на отказ - определяет сколько времени способен проработать накопитель без сбоев. Они приводят обычно среднюю условную наработку на отказ (расчетная статистическая величина).

Физический объем накопителей. Физический объем жестких дисков определен изначально и состоит из объема, занятого служебной информацией (разметка диска на дорожки и сектора) и объема, доступного пользовательским данным. Физический объем жесткого диска, также, зависит от типа интерфейса, метода кодирования данных, используемого физического формата и др.

Физическое хранение, методы кодирования информации. Вся информация и места ее хранения делятся на служебную и пользовательскую информацию. Служебная и пользовательская информация хранится в областях дорожек называемых секторами.

Методы кодирования данных.

Частотная модуляция (Frequency Modulation - FM) - метод, используемый в накопителях на сменных магнитных дисках (кодирование методом FM назвают кодирование с единичной плотностью).

Модифицированная частотная модуляция (Modified Frequency Modulation - MFM) - улучшенный метод FM.

Запись с групповым кодированием (Run Limited Length - RLL) - метод, полностью исключающий запись на диск каких-либо синхронизационных бит.

Модифицированная запись с групповым кодированием (Advanced Run Limited Length – ARLL) – улучшенный метод RLL, в котором, наряду с логическим уплотнением данных, производится повышение частоты обмена между контроллером и накопителем.

Интерфейсы жестких дисков.

В 80-х годах фирма IBM выпустила компьютер спецификации AT (Advanced Technology — передовая технология). Интерфейс появился в результате создания устройств со встроенным контроллером - IDE (Integrated Device Electronic).

Винчестер был подсоединен к 16-битной шине ISA и управлялся собственным контроллером.

Согласованный стандарт на такой интерфейс получил название ATA (AT Attachment — подключение к AT).

В спецификации ATA фигурируют следующие компоненты:

- хост - адаптер - средства сопряжения интерфейса ATA с системной шиной (в простейшем случае - набор буферных схем между шинами ISA и ATA) - хостом будем называть компьютер с хост-адаптером интерфейса ATA;

- кабель-шлейф с двумя или тремя 40-контактными IDC-разъемами (рисунок 8.9). В стандартном кабеле одноименные контакты всех разъемов соединяются вместе;

- ведущее устройство (Master) - периферийное устройство, в спецификации ATA официально называемое Device-0 (устройство-0);

- ведомое устройство (Slave) - периферийное устройство, в спецификации официально называемое Device-1 (устройство-1).

Если к шине ATA подключено одно устройство, оно должно быть ведущим. Если подключены два устройства, одно должно быть ведущим, другое - ведомым.

Для подключения устройств IDE существует несколько разновидностей интерфейса:

1. ATA (AT Attachment), он же AT-BUS - 16-битный интерфейс подключения к шине компьютера AT (40-проводной сигнальный и 4-проводной питающий интерфейс, для миниатюрных (2,5" и меньших) накопителей используют 44-проводной кабель, по которому передается и питание).

2. PC Card ATA - 16-битный интерфейс с 68-контактным разъемом PC Card (PCMCIA) для подключения к блокнотным ПК.

3. XT IDE (8-бит), он же XT-BUS - 40-проводной интерфейс, похожий на ATA, но несовместимый с ним.

4. MCA IDE (16-бит) - 72-проводный интерфейс, предназначенный специально для шины и накопителей PS/2.

5.   ATA-2 - расширенная спецификация ATA, объем диска до 8 Гбайт. Режим обмена данными - блоками Интерфейс остается 16-битным.

6. Fast ATА. Отличается от АТА-2 отсутствием быстрых режимов обмена (РIO4 и MW2 DMA).

7. Fast ATA-2 разрешает использовать Multiword DMA Mode 2 (13,3 Mбайт/с), не отличается от стандарта АТА-2. Отличия в том, что создан хост-адаптер Dual IDE/ATА, позволяющий использовать до четырех устройств.

8. ATA-3 - расширение ATA-2. Включает средства парольной защиты, улучшенного управления питанием, самотестирования с предупреждением приближения отказа. По режимам обмена данными АТА-3 полностью соответствует АТА-2.

9. ATA/ATAPI-ATAPI-4 - расширение ATA-3, включающее режим Ultra DMA со скоростью обмена до 33 Мбайт/с и пакетный интерфейс ATAPI. Жесткие диски ATA/ATAPI-4 выпускались под обозначением Ultra АТА-33.

10. Стандарт ATA/ATAPI-5. Протокол Ultra АТА-66 нового стандарта оговаривал режим передачи данных со скоростью до 66 Мбайт/с (спецификация Ultra DMA mode 4). Для подключения дисков используют шлейфы (с чередованием сигнальных проводников и линий, замкнутых на «землю»), имеющие 80 проводников, совместимые с существующими 40-контактными разъемами IDE.

11. Спецификация АТА/ATAPI-6, определяет требования к жестким дискам и интерфейсу с пиковой пропускной способностью до 100 Мбайт/с (режим Ultra DMA mode 5). Жесткие диски с интерфейсом АТА/ATAPI-6 обозначаются как ATА-100. Возможности дальнейшего совершенствования параллельного интерфейса IDE, несмотря на появление жестких дисков UltraATA-133 (пропускная способность 133 Мбайт/с в режиме UltraDMA Mode 5, объем накопителя в параллельном АТА ограничен 137 Гбайтами) практически исчерпаны.

12. E-IDE (Enhanced IDE) - расширенный интерфейс, введенный фирмой Western Digital. Реализуется в адаптерах для шин PCI и VLB, позволяющий подключать до 4 устройств (к двум каналам), включая CD-ROM и стриммеры (ATAPI). Поддерживает PIO Mode 3, multiword DMA mode 1, объем диска до 8 Гбайт, LBA и CHS. С аппаратной точки зрения практически полностью соответствует спецификации ATA-2.

Протоколы обмена данными  пополнились новыми стандартами: режимом Ultra DMA mode 2 и режимом коррекции ошибок по контрольной сумме (CRC — Cyclic Redundancy Check). Кроме того, появились многозадачные режимы, то есть режимы параллельного выполнения команд и создания очередей двумя устройствами на одном канале IDE.

Для устойчивой работы в режиме Ultra DMA рекомендуется применение 80-проводных кабелей, обеспечивающих чередование сигнальных цепей и проводов схемной земли (GND). На 80-проводном кабеле в разъеме для подключения контроллера контакт 34 соединен с шиной GND и не соединен с проводом шлейфа;  этим обеспечивается идентификация типа кабеля.  Спецификация АТА узаконивает так же 4-контактный разъем питания (рисунок 1.27).

а)                            б)

а - интерфейсный;

б - питания.

Рисунок 1.27 - Разъемы интерфейса АТА (вилки на устройствах)  

Спецификация на Serial ATA. Отличие нового интерфейса состоит в  последовательном способе обмена данными. Данные передаются по восьмижильному кабелю, уровень сигналов составляет 3,3 В. Реализация интерфейса позволяет достичь пиковой пропускной способности 1,5 Гбит/с (примерно 187 Мбайт/с).

Последовательный интерфейс ATA, как и  параллельный АТА, пред­назначен для подключений устройств внутри компьютера. Длина кабелей не превы­шает 1 м, при этом все соединения радиальные, каждое устройство подключается к хост-адаптеру своим кабелем.

Интерфейс SCSI является универсальным и определяет шину данных между центральным процессором и несколькими внешними устройствами, имеющими свой контроллер.

Сегодня применяются в основном два стандарта - SCSI-2 и Ultra SCSI. В режиме Fast SCSI-2 скорость передачи данных доходит до 10 мегабайт в секунду при использовании 8-разрядной шины и до 20 мегабайт при 16-разрядной шине Fast Wide SCSI-2. Стандарт Ultra SCSI отличается большей производительностью - 20 мегабайт в секунду для 8-разрядной шины и 40 мегабайт для 16-разрядной. В новейшем SCSI-3 увеличен набор команд, но быстродействие осталось на том же уровне. Все применяющиеся сегодня стандарты совместимы с предыдущими версиями сверху - вниз, то есть к адаптерам SCSI-2 и Ultra SCSI можно подключить старые SCSI-устройства. Интерфейс SCSI-Wide, SCSI-2, SCSI-3 - стандарты модификации интерфейса SCSI, разработаны комитетом ANSI. Общая концепция усовершенствований направлена на увеличение ширины шины до 32-х, с увеличением длинны соединительного кабеля и максимальной скорости передачи данных с сохранением совместимости с SCSI.

Работа накопителя.  Процесс работы накопителя от запуска до остановки. При подаче питающих напряжений начинает работать микропроцессор контроллера. Вначале он, как и компьютер, выполняет самотестирование и в случае его успеха запускает схему управления двигателем вращения шпинделя. Диски начинают раскручиваться, увлекая за собой прилегающие к поверхностям слои воздуха, и при достижении некоторой скорости давление набегающего на головки потока воздуха преодолевает силу пружин, прижимающих их к дискам, и головки всплывают, поднимаясь над дисками на доли микрона. С этого момента, вплоть до остановки дисков, головки не касаются дисков и парят над поверхностями, поэтому ни диски, ни сами головки практически не изнашиваются. Тем временем, двигатель шпинделя продолжает раскручивать поверхности. Его скорость постепенно приближается к номинальной (тысячи оборотов в минуту). В это время накопитель потребляет максимум питающего напряжения и создает предельную нагрузку на блок питания компьютера по напряжению 12 Вольт. Поскольку в любой зоне дисков присутствует серворазметка, то сервоимпульсы начинают поступать с головок сразу же после начала вращения, и по их частоте контроллер судит о скорости вращения дисков. Система стабилизации вращения следит за потоком сервоимпульсов, и при достижении номинальной скорости происходит так называемый захват, при котором любое отклонение скорости вращения сразу же корректируется изменением тока в обмотках двигателя. После достижения шпинделем номинальной скорости вращения освобождается фиксатор позиционера головок чтения/записи, и система его управления проверяет способность поворачиваться и удерживаться на выбранной дорожке путем выборочного произвольного позиционирования. При этом делается серия быстрых поворотов в разные стороны, что на слух выглядит как характерное тарахтение, слышимое через несколько секунд после старта. Во время перемещения позиционера головок происходит слежение за поступающими с головок серво-импульсами, и система управления всегда знает, над сколькими дорожками прошли головки. Аналогично происходит и удержание головок над выбранной дорожкой - при отклонении от центра дорожки изменяется во времени величина и форма серво-импульсов. Система управления может ликвидировать отклонение, изменяя ток в обмотках двигателя позиционера головок. Во время тестирования привода головок заодно делается и его калибровка - подбор параметров управляющих сигналов для наиболее быстрого и точного перемещения позиционера при минимальном количестве промахов. Здесь нужно сказать, что микрокомпьютер ЖД, как и компьютер, имеет ПЗУ, в котором записана BIOS накопителя - набор программ для начального запуска и управления во время работы, и ОЗУ, в которое после раскрутки механической системы загружаются остальные части управляющих программ. Кроме всего прочего, в ОЗУ загружается так называемая карта переназначения дефектных секторов, в которой отмечены дефектные секторы, выявленные при заводской разметке дисков. Эти секторы исключаются из работы и иногда подменяются резервными, которые имеются на каждой дорожке и в специальных резервных зонах каждого диска. Таким образом, даже если диски и имеют дефекты (а при современной плотности записи и массовом производстве поверхностей носителей они имеют их всегда), для пользователя создается впечатление чистого диска, свободного от сбойных секторов. Более того - на каждом диске накопителя имеется некоторый запас резервных секторов, которыми можно подменить и появляющиеся впоследствии дефекты. Для одних накопителей это возможно сделать под управлением специальных программ, для других - автоматически в процессе работы.

При выключении питания двигатель шпинделя работает в режиме генератора, обеспечивая питание плат электроники на время, необходимое для корректного завершения работы. Прежде всего, блокируется подача тока записи в магнитные головки, чтобы они не испортили информацию на поверхностях, а остаток энергии подается в обмотки привода головок, толкая их к центру дисков (в этом движении головкам помогает и естественная скатывающая сила, возникающая при вращении дисков). Как правило, для того чтобы запарковать головки достаточно одной скатывающей силы. Дойдя до посадочной зоны, привод головок защелкивается магнитным или механическим фиксатором еще до того, как головки успеют коснуться поверхности в результате падения скорости вращения дисков. В этом и состоит суть автопарковки - любой исправный накопитель всегда запаркует головки, как бы внезапно не было выключено питание, однако, если в этот момент происходила запись информации, то для пользователя последствия могут быть весьма печальными из-за недописанных или необновленных, как областей данных, так и управляющих структур файловой системы ПК, независимо от типа и вида установленной ОС.

Структурная схема магнитного накопителя типа «винчестер». Типовая структурная схема винчестера показана на рисунке 1.28. Функции основных узлов электроники винчестера.

Рисунок 1.28 – Структурная схема жесткого магнитного диска

N-контроллер управляет ресурсами всех узлов и отвечает за механизм выбора головки. В N-контроллер входят следующие элементы – АЦП, сервоконтроллер, блок коррекции ошибок, форматтер.

АЦП декодирует информацию о местоположении головки в цифровой вид и передает ее сервоконтроллеру.

Сервоконтроллер содержит ЦАП и тем самым управляет широтно-импульсной модуляцией, тем самым отвечая за управление позиционированием головок относительно магнитных дисков.

Блок коррекции ошибок служит для коррекции возникающих ошибок.

Форматер управляет частью процесса чтения-записи контролируя сигналы Read и Write Gate.

Ещё посмотрите лекцию "3. Планирование" по этой теме.

Дисковый контроллер (контроллер интерфейса) отвечает за обмен данными с компьютером.

Микросхема чтения-записи работает под управлением контроллера диска и интерфейса, обеспечивает предкомпенсацию записываемых данных и работу канала чтения. Микросхема чтения-записи состоит из операционного усилителя, АЦП, детектора Виттерби.

Операционный усилитель принимает сигнал чтения, усиливает и передает на фильтр Баттерворта.

Предкомпенсатор осуществляет конечное преобразование данных перед записью их на магнитный диск. Преобразованные данные поступают на предусилитель записи и затем на записывающуюся головку.

АЦП осуществляет преобразование отфильтрованного сигнала при операции чтения в цифровую последовательность.

Детектор Виттерби преобразует данные с ЦАП в поток двоичной информации.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Нашёл ошибку?
Или хочешь предложить что-то улучшить на этой странице? Напиши об этом и получи бонус!
Бонус рассчитывается индивидуально в каждом случае и может быть в виде баллов или бесплатной услуги от студизбы.
Предложить исправление
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5137
Авторов
на СтудИзбе
441
Средний доход
с одного платного файла
Обучение Подробнее