Главная » Все файлы » Просмотр файлов из архивов » PDF-файлы » Павельева Е.Б., Томашпольский В.Я. Линейная алгебра (2010)

Павельева Е.Б., Томашпольский В.Я. Линейная алгебра (2010)

Описание файла

PDF-файл из архива "Павельева Е.Б., Томашпольский В.Я. Линейная алгебра (2010)", который расположен в категории "книги и методические указания". Всё это находится в предмете "линейная алгебра и фнп" из второго семестра, которые можно найти в файловом архиве МГТУ им. Баумана. Не смотря на прямую связь этого архива с МГТУ им. Баумана, его также можно найти и в других разделах. .

Просмотр PDF-файла онлайн

Текст из PDF

Московский государственный технический университетимени Н.Э. БауманаФакультет «Фундаментальные науки»Кафедра «Высшая математика»Е.Б.Павельева, В.Я. ТомашпольскийЛинейная алгебраМетодические указанияк выполнению типового расчетаДля студентов всех специальностейУДК: 512.64Москва2010ОглавлениеВведение................................................................................................................... 2Глава I. Линейное пространство............................................................................

21.1. Определение и примеры линейных пространств ...................................... 21.2. Линейная зависимость ................................................................................. 41.3. Базис и размерность линейного пространства........................................... 81.4. Матрица перехода от старого базиса к новому базису. Преобразованиекоординат вектора при переходе к новому базису...................................... 111.5. Линейное подпространство ....................................................................... 17Глава II. Евклидово пространство ...................................................................... 202.1.

Определение и примеры евклидовых пространств................................ 202.2. Определение и примеры нормированных пространств......................... 222.3. Ортогональные иортонормированные базисы конечномерногоевклидова пространства. Процесс ортогонализации Грама-Шмидта ......... 24Глава III. Линейные операторы ........................................................................... 283.1. Определение и примеры линейных операторов. Матрица линейногооператора ............................................................................................................

283.2. Действия над линейными операторами.................................................. 323.3. Преобразование матрицы линейного оператора при переходе к новомубазису .................................................................................................................. 343.4. Собственные векторы и собственные значения линейного оператора. 353.5. Приведение матрицы линейного оператора к диагональному виду ....

39Глава IV. Линейные операторы в евклидовых пространствах........................ 444.1. Сопряженные и самосопряженные операторы и их матрицы вортонормированном базисе. Свойства собственных значений исобственных векторов самосопряженного оператора ................................... 444.2. Ортогональные операторы и ортогональные матрицы ..........................

454.3.Приведениесимметрическойматрицыортогональнымпреобразованием к диагональному виду........................................................ 47Глава V. Квадратичные формы............................................................................ 515.1.

Определение квадратичной формы, матрица квадратичной формы,преобразование матрицы квадратичной формы при переходе к новомубазису .................................................................................................................. 515.2. Приведение квадратичной формы к каноническому виду. Законинерции ............................................................................................................... 545.3. Знакоопределенные квадратичные формы ..............................................

59Глава VI. Приведение уравнений кривых и поверхностей второго порядка кканоническому виду.............................................................................................. 62Глава VII. Разбор типового расчета по линейной алгебре .............................. 70Список литературы ............................................................................................... 771ВведениеВ пособии приведены все основные определения и формулировкитеорем по следующим разделам линейной алгебры: линейное пространство,евклидово пространство, линейные операторы, линейные операторы вевклидовых пространствах, квадратичные формы, приведение уравненийкривых и поверхностей второго порядка к каноническому виду.В работе разобрано большое количество задач как стандартных, так иповышенной сложности.

Разобран типовой расчет по линейной алгебре. Вконце каждой главы приведены задачи для самостоятельного решения.Пособие полезно всем студентам, изучающим линейную алгебру.Глава I. Линейное пространство1.1. Определение и примеры линейных пространствОпределение. Множество L элементов любой природы называетсявещественным линейным пространством, если выполнены следующиетри условия.1. Задано сложение элементов из L, т.е.

задан закон, по которомулюбым двум элементам x, y ∈ L ставится в соответствие элемент z ∈ L ,называемый суммой элементов x и y и обозначаемый символом z = x + y .2. Задано умножение элемента из L на действительное число, т.е. заданзакон, по которому любому элементу x∈ L и любому действительномучислу λ ставится в соответствие элемент z ∈ L , называемый произведениемэлемента x на действительное число λ и обозначаемый символом z = λ ⋅ x .3. Указанные два правила подчинены следующим восьми аксиомам:1) x + y = y + x ∀ x, y ∈ L (аксиома коммутативности);2) ( x + y ) + z = x + ( y + z ) ∀x , y, z ∈ L (аксиома ассоциативности);3) существует нулевой элемент θ ∈ L такой, что ∀ x ∈ L выполняетсяx +θ = x;4) для каждого элемента x ∈ L существует противоположный элементx ′ ∈ L такой, что x + x ′ = θ ;5) 1 ⋅ x = x ∀ x ∈ L ;∀λ , μ ∈ R , ∀ x ∈ L ;6) λ ⋅ (μ ⋅ x ) = (λμ ) ⋅ x∀λ , μ ∈ R ,∀x∈L(аксиома7) (λ + μ ) ⋅ x = λ ⋅ x + μ ⋅ xдистрибутивности умножения на число относительно сложения чисел);8) λ ⋅ ( x + y ) = λ ⋅ x + λ ⋅ y∀λ ∈ R ,∀ x, y ∈ L(аксиомадистрибутивности умножения на число относительно сложения элементов).Из аксиом 1) – 8) можно получить ряд простейших свойств линейныхпространств.21) В произвольном линейном пространстве существует единственныйнулевой элемент θ .2) Для каждого элементаx∈ L существует единственныйпротивоположный элемент.3) 0 ⋅ x = θ∀x∈L.4) − 1 ⋅ x = x ′ ∀ x ∈ L .5) λ ⋅ θ = θ∀λ ∈ R .Элементы линейного пространства будем называть векторами.Приведем примеры конкретных линейных пространств.1.

Множество R всех действительных чисел. Операции сложения иумножения на число являются обычными операциями сложения иумножения действительных чисел.2. Множества V1 ,V2 ,V3 всех свободных векторов на прямой, наплоскости, в пространстве. Операции сложения векторов и умножениявектора на число определены в курсе аналитической геометрии.3. Множество R n упорядоченных наборов n действительных чисел,называемых арифметическими векторами (или множество матриц-строкдлины n , элементами которых являются действительные числа):R n = {x = ( x1 , x2 ,..., xn ) xi ∈ R, i = 1, 2 , ..., n}. Для любых элементов x, y ∈ R n :x = ( x1 , ..., xn ) , y = ( y1,..., y n ) определим операцию сложения и умножения начисло следующим образом: x + y = ( x1 + y1 ,..., xn + y n ) , λ ⋅ x = (λx1 ,..., λxn ) .Нулевой и обратный элементы имеют вид: θ = (0 ,..., 0) , x ′ = ( − x1 ,...,− xn ) .Замечание.

Иногда из соображения удобства будем записыватьарифметические векторы в виде столбцов.4. Множество M m× n всех вещественных матриц размера m × n .Операции сложения матриц и умножения матрицы на число определены вкурсе аналитической геометрии.5. Множество C [a, b ] всех функций, непрерывных на отрезке [a, b] .Операции сложения и умножения на число являются обычными операциямисложения функций и умножения функции на число.6. Множество Pn всех алгебраических многочленов переменной x истепени, не превышающей n :Pn = f ( x) = a0 + a1 x + ...

+ an x n ai ∈ R , i = 0,1, ..., n . Операции сложения иумножения на число являются обычными операциями сложения многочленови умножения многочлена на число. Число 0 ∈ R по определению считаетсямногочленом с нулевыми коэффициентами и называется нулевыммногочленом.Отметим, что множество всех алгебраических многочленов степени nне является линейным пространством. Сумма таких многочленов можетоказаться степени ниже n . В качестве примера рассмотрим множество всехалгебраическихмногочленоввторойстепени.Присложении{}3сполучим f ( x) + g ( x) = 5 x + 1f ( x) = x 2 + 3 x + 1g ( x) = − x 2 + 2 x ,многочлен первой степени, не лежащий в рассматриваемом множестве.7.

Рассмотрим множество R+ всех действительных положительныхчисел. Если суммой двух чисел x, y ∈ R+ считать обычную сумму двухдействительных чисел x + y , а произведением числа λ на x - обычноепроизведение двух действительных чисел λx , то множество R+ не являетсялинейным пространством, т.к. операция умножения элемента x ∈ R+ наотрицательное число выводит из этого множества. Введем операциисложения элементов и умножения на действительное число на множествеR+ по-другому. Суммой двух чисел назовем их произведение: x ⊕ y = xy ,умножением числа x на действительное число λ назовем возведение x встепень λ : λ o x = x λ .

Обе операции не выводят из множества R+ . Легкопроверить выполнение восьми аксиом:1) x ⊕ y = xy = yx = y ⊕ x ;2) ( x ⊕ y ) ⊕ z = ( xy ) z = x( yz ) = x ⊕ ( y ⊕ z ) ;3) нулевым элементом является число 1, действительно,x ⊕ θ = x ⊕ 1 = x ⋅1 = x ;4) противоположным произвольному числу x ∈ R+ является число11x ′ = , действительно, x ⊕ x′ = x ⋅ = 1 = θ ;xx15) 1o x = x = x ;( )λ = x μ λ = x λ μ = (λ μ ) o x ;6) λ o (μ o x ) = x μ7) (λ + μ ) o x = x λ + μ = x λ x μ = (λ o x ) ⊕ (μ o x ) ;8) λ o ( x ⊕ y ) = ( xy ) = x λ y λ = (λ o x ) ⊕ (λ o y ) .Таким образом, множество R+ с введенными операциями сложенияэлементов и умножения на действительное число является линейнымпространством.λ1.2.

Для добавления файла нужно быть зарегистрированным пользователем. Зарегистрироваться и авторизоваться можно моментально через социальную сеть "ВКонтакте" по кнопке ниже:

Войти через
или

Вы можете зарегистрироваться стандартным методом и авторизоваться по логину и паролю с помощью формы слева.

Не забывайте, что на публикации файлов можно заработать.