30697-1 (Трёхмерная компьютерная графика), страница 8

2016-07-31СтудИзба

Описание файла

Документ из архива "Трёхмерная компьютерная графика", который расположен в категории "". Всё это находится в предмете "информатика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "30697-1"

Текст 8 страницы из документа "30697-1"

Если z (x, y) > z буфер (x, y), то записать атрибут этого многоугольника (интенсивность, цвет и т. п.) в буфер кадра и заменить z-буфер(x, y) на z (x, y).

В противном случае никаких действий не производить.

В качестве предварительного шага там, где это целесообразно, применяется удаление нелицевых граней.

Если известно уравнение плоскости, несущей каждый многоугольник, то вычисление глубины каждого пиксела на сканирующей строке можно проделать пошаговым способом. Как известно уравнение плоскости имеет вид

ax + by + cz + d =0

z = ( ax + by + d)/c 0

Для сканирующей строки y = const. Поэтому глубина пиксела наэтой строке, у которого x = x + x, равна

z1 z = (ax1 + d)/c + (ax + d)/c = a(x x1)/c

или

z1 = z – (a/c)x

Но x = 1, поэтому z1 = (а/с).

Алгоритм, использующий z-буфер, можно также применить для построения сечений поверхностей. Изменится только оператор сравнения:

z(x, y) > z-буфер(x, y) and z(x, y) Zсечения

где Zсечения - глубина искомого сечения. Эффект заключается в том, что остаются только такие элементы поверхности, которые лежат на самом сечении или позади него.

Алгоритм определения видимых поверхностей путём трассировки лучей

Оценки эффективности всех алгоритмов удаления невидимых поверхностей, изложенных ранее, зависят от определенных характеристик когерентности той сцены, для которой ведется поиск ее видимых участков. В отличие от них трассировка лучей является методом грубой силы. Главная идея, лежащая в основе этого метода, заключается в том, что наблюдатель видит любой объект посредством испускаемого неким источником света, который падает на этот объект и затем каким-то путем доходит до наблюдателя. Свет может достичь наблюдателя, отразившись от поверхности, преломившись или пройдя через нее. Если проследить за лучами света, выпущенными источником, то можно убедиться, что весьма немногие из них дойдут до наблюдателя. Следовательно, этот процесс был бы вычислительно неэффективен. В следствии этого было предложено отслеживать (трассировать) лучи в обратном направлении, т. е. от наблюдателя к объекту, как показано на рис. 3.11. В первом алгоритме трассировка прекращалась, как только луч пересекал поверхность видимого непрозрачного объекта; т. е. луч использовался только для обработки скрытых или видимых поверхностей. С течением времени был реализован алгоритм трассировки лучей с использованием общих моделей освещения. Эти алгоритмы учитывают эффекты отражения одного объекта от поверхности другого, преломления, прозрачности и затенения. Производится также устранение ступенчатости. Рассмотрим применением метода трассировки лучей для определения видимых или скрытых поверхностей.

3.11. Простая трассировка лучей

Рис.3.11 служит иллюстрацией алгоритма трассировки лучей. В этом алгоритме предполагается, что сцена уже преобразована в пространство изображения. Перспективное преобразование не используется. Считается, что точка зрения или наблюдатель находится в бесконечности на положительной полуоси z. Поэтому все световые лучи параллельны оси z. Каждый луч, исходящий от наблюдателя, проходит через центр пиксела на растре до сцены. Траектория каждого луча отслеживается, чтобы определить, какие именно объекты сцены, если таковые существуют, пересекаются с данным лучом. Необходимо проверить пересечение каждого объекта сцены с каждым лучом.

3.12. Трассировка луча с учётом перспективы

Если луч пересекает объект, то определяются всевозможные точки пересечения луча и объекта. Можно получить большое количество пересечений, если рассматривать много объектов. Эти пересечения упорядочиваются по глубине. Пересечение с максимальным значением z представляет видимую поверхность для данного пиксела. Атрибуты этого объекта используются для определения характеристик пиксела.

Если точка зрения находится не в бесконечности, алгоритм трассировки лучей лишь незначительно усложняется. Здесь предполагается, что наблюдатель по-прежнему находится на положительной полуоси z. Картинная плоскость, т. е. растр, перпендикулярна оси z, как показано на рис 3.12. Задача состоит в том, чтобы построить одноточечную центральную проекцию на картинную плоскость.

Наиболее важным элементом алгоритма определения видимых поверхностей путем трассировки лучей, является процедура определения пересечений. В состав сцены можно включать любой объект, для которого можно создать процедуру построения пересечений. Объекты сцены могут состоять из набора плоских многоугольников, многогранников или тел, ограниченных или определяемых квадратичными или биполиномиальными параметрическими поверхностями. Поскольку 75-95% времени, затрачиваемого алгоритмом трассировки лучей, уходит на определение пересечений, то эффективность процедуры поиска пересечений оказывает значительно влияние на производительность всего алгоритма. Вычислительная стоимость определения пересечений произвольной пространственной прямой (луча) с одним выделенным объектом может оказаться высокой. Чтобы избавиться от ненужного поиска пересечений, производится проверка пересечения луча с объемной оболочкой рассматриваемого объекта. И если луч не пересекает оболочки, то не нужно больше искать пересечений этого объекта с лучом. В качестве оболочки можно использовать прямоугольный параллелепипед или сферу.

3.13 Сферическая и прямоугольная оболочки

Хотя, как показано, на рис. 3.13, использование сферы в качестве оболочки может оказаться неэффективным, факт пересечения трехмерного луча со сферой определяется очень просто. В частности, если расстояние от центра сферической оболочки до луча превосходит радиус этой сферы, луч не пересекает оболочки. Следовательно, он не может пересекаться и с объектом.

Поэтому тест со сферической оболочкой сводится к определению расстояния от точки до трехмерной прямой, т. е. луча. Будем использовать параметрическое представление прямой, проходящей через точки P1(x1, y1, z1) и P2(x2, y2, z2) т. е.:

Р(t) = P1 + (P2 P1)t

с компонентами

x = x1 +(x2 x1)t = x1 +at

y = y1 +(y2 y1)t = y1 +bt

z = z1 +(z2 z1)t = z1 +ct

Тогда минимальное расстояние d от этой прямой до точки P0(x0, y0, z0) равно:

d2 = (x x0)2 + (y y0)2 +(z z0)2

а параметр t, определяющий ближайшую точку Р(t) равен:

Если d2 > R2, где R - радиус сферической оболочки, то луч не может пересечься с объектом.

Выполнение габаритного теста с прямоугольной оболочкой в трехмерном пространстве требует большого объема вычислений. При этом следует проверить пересечение луча по меньшей мере с тремя бесконечными плоскостями, ограничивающими прямоугольную оболочку. Поскольку точки пересечения могут оказаться вне граней этого параллелепипеда, то для каждой из них следует, кроме того, произвести проверку на охват или попадание внутрь. Следовательно, для трех измерений тест с прямоугольной оболочкой оказывается более медленным, чем тест со сферической оболочкой.

Одной простой процедурой можно свести тест с прямоугольной оболочкой к сравнению знаков, упрощая тем самым вычисление пересечений с объектом, а также сравнения по глубине среди точек пересечения. В этой процедуре используются переносы и повороты вокруг координатных осей для того, чтобы добиться совпадения луча с осью z. Аналогичным преобразованиям подвергается и прямоугольная оболочка объекта. Луч пересекает оболочку, если в новой перенесенной и повернутой системе координат знаки xmin и xmax, а так же ymin и ymax. противоположны, как показано на рис. 3.14.

3.14 Пересечение прямоугольной области в преобразованной системе координат

Рассмотрим упрощение вычислений точек пересечения луча и поверхности второго порядка общего вида. В произвольной декартовой системе координат поверхностей второго порядка является геометрическим местом точек, координаты которых удовлетворяют уравнению:

Q (x, y, z) = a1x2 + a2y2 + a3z2 +

b1yz + b2xz + b3xy +

c1x + c2y + c3z +d = 0

После применения преобразования, которое является комбинацией переноса и поворота и используется для совмещения луча с осью z, пересечение этого луча с поверхностью, если оно имеет место, возникает при x = y = 0. Поэтому в общем случае точки пересечения являются решениями уравнения:

т.е.

где штрих сверху обозначает коэффициенты общего уравнения поверхности второго порядка после преобразования. Если , то решения выражаются комплексными числами и луч не пересекает поверхности. Если бесконечная поверхность второго порядка (например, конус или цилиндр) ограничена плоскостями, то эти плоскости также следует преобразовать и проверить на пересечения. Если найдено пересечение с бесконечной ограничивающей плоскостью, то необходимо, кроме того, произвести проверку на попадание внутрь. Однако в преобразованной системе координат эту проверку можно произвести на двумерной проекции фигуры, образованной пересечением ограничивающей плоскости и квадратичной поверхности. Для получения точки пересечения в исходной системе координат необходимо применить обратное преобразование.

Вычисления пересечений для элементов биполиномиальных параметрических поверхностей более сложны. Уиттед предложил простой метод разбиения для элемента бикубической поверхности. Вычисления выполняются с элементом поверхности в его исходном положении. Если луч пересекает сферическую оболочку элемента поверхности, то этот кусок разбивается с помощью алгоритма разбиения предложенного Кэтмулом. Затем луч проверяется на пересечение со сферическими оболочками подэлементов. Если пересечение не обнаружено, то луч не пересекается и с самим элементом. Если же луч пересекается со сферической оболочкой какого-нибудь подэлемента, то последний разбивается дальше. Процесс завершается, если ни одна из сферических оболочек не пересечена или если достигнут заранее определенный их минимальный размер. Эти сферические оболочки минимального размера и являются искомыми пересечениями луча и элемента поверхности.

При реализации преобразования, совмещающего луч с осью z, метод разбиения можно использовать скорее применительно к прямоугольным оболочкам, чем к сферическим. Это сокращает число разбиений и увеличивает эффективность алгоритма. Для параметрических поверхностей, обладающих свойством выпуклой оболочки, например для поверхностей Безье и В-сплайнов, число разбиений можно сократить дополнительно за счет усложнения алгоритма, если для подэлементов воспользоваться их выпуклыми оболочками вместо прямоугольных.

Кадзия разработал метод для биполиномиальных параметрических поверхностей, который не требует их подразделения. Этот метод основан на понятиях, заимствованных из алгебраической геометрии. Решения получающихся при этом алгебраических уравнений высших степеней находятся численно. Метод, подобный этому, можно реализовать в преобразованной системе координат. Напомним, что биполиномиальная параметрическая поверхность определяется уравнением

Q (u, w) = 0

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5161
Авторов
на СтудИзбе
439
Средний доход
с одного платного файла
Обучение Подробнее