25685-1 (Основные функции и компоненты ядра ОС UNIX), страница 7

2016-07-31СтудИзба

Описание файла

Документ из архива "Основные функции и компоненты ядра ОС UNIX", который расположен в категории "". Всё это находится в предмете "информатика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "25685-1"

Текст 7 страницы из документа "25685-1"

Долгое время отцы-основатели ОС UNIX считали, что в той области, для которой предназначался UNIX (разработка программного обеспечения, подготовка и сопровождение технической документации и т.д.) этих возможностей вполне достаточно. Однако постепенное распространение системы в других областях и сравнительная простота наращивания ее возможностей привели к тому, что со временем в разных вариантах ОС UNIX в совокупности появился явно избыточный набор системных средств, предназначенных для обеспечения возможности взаимодействия и синхронизации процессов, которые не обязательно связаны отношением родства (в мире ОС UNIX эти средства обычно называют IPC от Inter-Process Communication Facilities). С появлением UNIX System V Release 4.0 (и более старшей версии 4.2) все эти средства были узаконены и вошли в фактический стандарт ОС UNIX современного образца.

Нельзя сказать, что средства IPC ОС UNIX идеальны хотя бы в каком-нибудь отношении. При разработке сложных асинхронных программных комплексов (например, систем реального времени) больше всего неудобств причиняет избыточность средств IPC. Всегда возможны несколько вариантов реализации, и очень часто невозможно найти критерии выбора. Дополнительную проблему создает тот факт, что в разных вариантах системы средства IPC реализуются по-разному, зачастую одни средства реализованы на основе использования других средств. Поэтому эффективность реализации различается, из-за чего усложняется разработка мобильных асинхронных программных комплексов.

Тем не менее, знать возможности IPC, безусловно, нужно, если относиться к ОС UNIX как к серьезной производственной операционной системе. В этом разделе мы рассмотрим основные стандартизованные возможности в основном на идейном уровне, не вдаваясь в технические детали.

Порядок рассмотрения не отражает какую-либо особую степень важности или предпочтительности конкретного средства. Мы начинаем с пакета средств IPC, которые появились в UNIX System V Release 3.0. Этот пакет включает:

  • средства, обеспечивающие возможность наличия общей для процессов памяти (сегменты разделяемой памяти - shared memory segments);

  • средства, обеспечивающие возможность синхронизации процессов при доступе к совместно используемым ресурсам, например, к разделяемой памяти (семафоры - semaphores);

  • средства, обеспечивающие возможность посылки процессом сообщений другому произвольному процессу (очереди сообщений - message queues).

Эти механизмы объединяются в единый пакет, потому что соответствующие системные вызовы обладают близкими интерфейсами, а в их реализации используются многие общие подпрограммы. Вот основные общие свойства всех трех механизмов:

  • Для каждого механизма поддерживается общесистемная таблица, элементы которой описывают всех существующих в данный момент представителей механизма (конкретные сегменты, семафоры или очереди сообщений).

  • Элемент таблицы содержит некоторый числовой ключ, который является выбранным пользователем именем представителя соответствующего механизма. Другими словами, чтобы два или более процесса могли использовать некоторый механизм, они должны заранее договориться об именовании используемого представителя этого механизма и добиться того, чтобы тот же представитель не использовался другими процессами.

  • Процесс, желающий начать пользоваться одним из механизмов, обращается к системе с системным вызовом из семейства "get", прямыми параметрами которого является ключ объекта и дополнительные флаги, а ответным параметром является числовой дескриптор, используемый в дальнейших системных вызовах подобно тому, как используется дескриптор файла при работе с файловой системой. Допускается использование специального значения ключа с символическим именем IPC_PRIVATE, обязывающего систему выделить новый элемент в таблице соответствующего механизма независимо от наличия или отсутствия в ней элемента, содержащего то же значение ключа. При указании других значений ключа задание флага IPC_CREAT приводит к образованию нового элемента таблицы, если в таблице отсутствует элемент с указанным значением ключа, или нахождению элемента с этим значением ключа. Комбинация флагов IPC_CREAT и IPC_EXCL приводит к выдаче диагностики об ошибочной ситуации, если в таблице уже содержится элемент с указанным значением ключа.

  • Защита доступа к ранее созданным элементам таблицы каждого механизма основывается на тех же принципах, что и защита доступа к файлам.

Перейдем к более детальному изучению конкретных механизмов этого семейства.

Разделяемая память

Для работы с разделяемой памятью используются четыре системных вызова:

  • shmget создает новый сегмент разделяемой памяти или находит существующий сегмент с тем же ключом;

  • shmat подключает сегмент с указанным дескриптором к виртуальной памяти обращающегося процесса;

  • shmdt отключает от виртуальной памяти ранее подключенный к ней сегмент с указанным виртуальным адресом начала;

  • наконец, системный вызов shmctl служит для управления разнообразными параметрами, связанными с существующим сегментом.

После того, как сегмент разделяемой памяти подключен к виртуальной памяти процесса, этот процесс может обращаться к соответствующим элементам памяти с использованием обычных машинных команд чтения и записи, не прибегая к использованию дополнительных системных вызовов.

Синтаксис системного вызова shmget выглядит следующим образом:

shmid = shmget(key, size, flag);

Параметр size определяет желаемый размер сегмента в байтах. Далее работа происходит по общим правилам. Если в таблице разделяемой памяти находится элемент, содержащий заданный ключ, и права доступа не противоречат текущим характеристикам обращающегося процесса, то значением системного вызова является дескриптор существующего сегмента (и обратившийся процесс так и не узнает реального размера сегмента, хотя впоследствии его все-таки можно узнать с помощью системного вызова shmctl). В противном случае создается новый сегмент с размером не меньше установленного в системе минимального размера сегмента разделяемой памяти и не больше установленного максимального размера. Создание сегмента не означает немедленного выделения под него основной памяти. Это действие откладывается до выполнения первого системного вызова подключения сегмента к виртуальной памяти некоторого процесса. Аналогично, при выполнении последнего системного вызова отключения сегмента от виртуальной памяти соответствующая основная память освобождается.

Подключение сегмента к виртуальной памяти выполняется путем обращения к системному вызову shmat:

virtaddr = shmat(id, addr, flags);

Здесь id - это ранее полученный дескриптор сегмента, а addr - желаемый процессом виртуальный адрес, который должен соответствовать началу сегмента в виртуальной памяти. Значением системного вызова является реальный виртуальный адрес начала сегмента (его значение не обязательно совпадает со значением прямого параметра addr). Если значением addr является нуль, ядро выбирает наиболее удобный виртуальный адрес начала сегмента. Кроме того, ядро старается обеспечить (но не гарантирует) выбор такого стартового виртуального адреса сегмента, который обеспечивал бы отсутствие перекрывающихся виртуальных адресов данного разделяемого сегмента, сегмента данных и сегмента стека процесса (два последних сегмента могут расширяться).

Для отключения сегмента от виртуальной памяти используется системный вызов shmdt:

shmdt(addr);

где addr - это виртуальный адрес начала сегмента в виртуальной памяти, ранее полученный от системного вызова shmat. Естественно, система гарантирует (на основе использования таблицы сегментов процесса), что указанный виртуальный адрес действительно является адресом начала (разделяемого) сегмента в виртуальной памяти данного процесса.

Системный вызов shmctl:

shmctl(id, cmd, shsstatbuf);

содержит прямой параметр cmd, идентифицирующий требуемое конкретное действие, и предназначен для выполнения различных функций. Видимо, наиболее важной является функция уничтожения сегмента разделяемой памяти. Уничтожение сегмента производится следующим образом. Если к моменту выполнения системного вызова ни один процесс не подключил сегмент к своей виртуальной памяти, то основная память, занимаемая сегментом, освобождается, а соответствующий элемент таблицы разделяемых сегментов объявляется свободным. В противном случае в элементе таблицы сегментов выставляется флаг, запрещающий выполнение системного вызова shmget по отношению к этому сегменту, но процессам, успевшим получить дескриптор сегмента, по-прежнему разрешается подключать сегмент к своей виртуальной памяти. При выполнении последнего системного вызова отключения сегмента от виртуальной памяти операция уничтожения сегмента завершается.

Семафоры

Механизм семафоров, реализованный в ОС UNIX, является обобщением классического механизма семафоров общего вида, предложенного более 25 лет тому назад известным голландским специалистом профессором Дейкстрой. Заметим, что целесообразность введения такого обобщения достаточно сомнительна. Обычно наоборот использовался облегченный вариант семафоров Дейкстры - так называемые двоичные семафоры. Мы не будем здесь углубляться в общую теорию синхронизации на основе семафоров, но заметим, что достаточность в общем случае двоичных семафоров доказана (известен алгоритм реализации семафоров общего вида на основе двоичных). Конечно, аналогичные рассуждения можно было бы применить и к варианту семафоров, примененному в ОС UNIX.

Семафор в ОС UNIX состоит из следующих элементов:

  • значение семафора;

  • идентификатор процесса, который хронологически последним работал с семафором;

  • число процессов, ожидающих увеличения значения семафора;

  • число процессов, ожидающих нулевого значения семафора.

Для работы с семафорами поддерживаются три системных вызова:

  • semget для создания и получения доступа к набору семафоров;

  • semop для манипулирования значениями семафоров (это именно тот системный вызов, который позволяет процессам синхронизоваться на основе использования семафоров);

  • semctl для выполнения разнообразных управляющих операций над набором семафоров.

Системный вызов semget имеет следующий синтаксис:

id = semget(key, count, flag);

где прямые параметры key и flag и возвращаемое значение системного вызова имеют тот же смысл, что для других системных вызовов семейства "get", а параметр count задает число семафоров в наборе семафоров, обладающих одним и тем же ключом. После этого индивидуальный семафор идентифицируется дескриптором набора семафоров и номером семафора в этом наборе. Если к моменту выполнения системного вызова semget набор семафоров с указанным ключом уже существует, то обращающийся процесс получит соответствующий дескриптор, но так и не узнает о реальном числе семафоров в группе (хотя позже это все-таки можно узнать с помощью системного вызова semctl).

Основным системным вызовом для манипулирования семафором является semop:

oldval = semop(id, oplist, count);

где id - это ранее полученный дескриптор группы семафоров, oplist - массив описателей операций над семафорами группы, а count - размер этого массива. Значение, возвращаемое системным вызовом, является значением последнего обработанного семафора. Каждый элемент массива oplist имеет следующую структуру:

  • номер семафора в указанном наборе семафоров;

  • операция;

  • флаги.

Если проверка прав доступа проходит нормально, и указанные в массиве oplist номера семафоров не выходят за пределы общего размера набора семафоров, то системный вызов выполняется следующим образом. Для каждого элемента массива oplist значение соответствующего семафора изменяется в соответствии со значением поля "операция".

  • Если значение поля операции положительно, то значение семафора увеличивается на единицу, а все процессы, ожидающие увеличения значения семафора, активизируются (пробуждаются в терминологии UNIX).

  • Если значение поля операции равно нулю, то если значение семафора также равно нулю, выбирается следующий элемент массива oplist. Если же значение семафора отлично от нуля, то ядро увеличивает на единицу число процессов, ожидающих нулевого значения семафора, а обратившийся процесс переводится в состояние ожидания (усыпляется в терминологии UNIX).

  • Наконец, если значение поля операции отрицательно, и его абсолютное значение меньше или равно значению семафора, то ядро прибавляет это отрицательное значение к значению семафора. Если в результате значение семафора стало нулевым, то ядро активизирует (пробуждает) все процессы, ожидающие нулевого значения этого семафора. Если же значение семафора меньше абсолютной величины поля операции, то ядро увеличивает на единицу число процессов, ожидающих увеличения значения семафора и откладывает (усыпляет) текущий процесс до наступления этого события.

Основным поводом для введения массовых операций над семафорами было стремление дать программистам возможность избегать тупиковых ситуаций в связи с семафорной синхронизацией. Это обеспечивается тем, что системный вызов semop, каким бы длинным он не был (по причине потенциально неограниченной длины массива oplist) выполняется как атомарная операция, т.е. во время выполнения semop ни один другой процесс не может изменить значение какого-либо семафора.

Наконец, среди флагов-параметров системного вызова semop может содержаться флаг с символическим именем IPC_NOWAIT, наличие которого заставляет ядро ОС UNIX не блокировать текущий процесс, а лишь сообщать в ответных параметрах о возникновении ситуации, приведшей бы к блокированию процесса при отсутствии флага IPC_NOWAIT. Мы не будем обсуждать здесь возможности корректного завершения работы с семафорами при незапланированном завершении процесса; заметим только, что такие возможности обеспечиваются.

Системный вызов semctl имеет формат

semctl(id, number, cmd, arg);

где id - это дескриптор группы семафоров, number - номер семафора в группе, cmd - код операции, а arg - указатель на структуру, содержимое которой интерпретируется по-разному, в зависимости от операции. В частности, с помощью semctl можно уничтожить индивидуальный семафор в указанной группе. Однако детали этого системного вызова настолько громоздки, что мы рекомендуем в случае необходимости обращаться к технической документации используемого варианта операционной системы.

Очереди сообщений

Для обеспечения возможности обмена сообщениями между процессами этот механизм поддерживается следующими системными вызовами:

  • msgget для образования новой очереди сообщений или получения дескриптора существующей очереди;

  • msgsnd для посылки сообщения (вернее, для его постановки в указанную очередь сообщений);

  • msgrcv для приема сообщения (вернее, для выборки сообщения из очереди сообщений);

  • msgctl для выполнения ряда управляющих действий.

Системный вызов msgget обладает стандартным для семейства "get" системных вызовов синтаксисом:

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5161
Авторов
на СтудИзбе
438
Средний доход
с одного платного файла
Обучение Подробнее