25685-1 (Основные функции и компоненты ядра ОС UNIX), страница 3

2016-07-31СтудИзба

Описание файла

Документ из архива "Основные функции и компоненты ядра ОС UNIX", который расположен в категории "". Всё это находится в предмете "информатика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "25685-1"

Текст 3 страницы из документа "25685-1"

Откачку страниц, не входящих в рабочие наборы процессов, производит специальный системный процесс-stealer. Он начинает работать, когда количество страниц в списке свободных страниц достигает установленного нижнего порога. Функцией этого процесса является анализ необходимости откачки страницы (на основе признака изменения) и запись копии страницы (если это требуется) в соответствующую область внешней памяти (т.е. либо в системную область подкачки - swapping space для анонимных страниц, либо в некоторый блок файловой системы для страницы, входящей в сегмент отображаемого файла).

Очевидно, рабочий набор любого процесса может изменяться во время его выполнения. Другими словами, возможна ситуация, когда процесс обращается к виртуальной странице, отсутствующей в основной памяти. В этом случае, как обычно, возникает аппаратное прерывание, в результате которого начинает работать операционная система. Дальнейший ход событий зависит от обстоятельств. Если список описателей свободных страниц не пуст, то из него выбирается некоторый описатель, и соответствующая страница подключается к виртуальной памяти процесса (конечно, после считывания из внешней памяти содержимого копии этой страницы, если это требуется).

Но если возникает требование страницы в условиях, когда список описателей свободных страниц пуст, то начинает работать механизм своппинга. Основной повод для применения другого механизма состоит в том, что простое отнятие страницы у любого процесса (включая тот, который затребовал бы страницу) потенциально вело бы к ситуации thrashing, поскольку разрушало бы рабочий набор некоторого процесса). Любой процесс, затребовавший страницу не из своего текущего рабочего набора, становится кандидатом на своппинг. Ему больше не предоставляются ресурсы процессора, и описатель процесса ставится в очередь к системному процессу-swapper. Конечно, в этой очереди может находиться несколько процессов. Процесс-swapper по очереди осуществляет полный своппинг этих процессов (т.е. откачку всех страниц их виртуальной памяти, которые присутствуют в основной памяти), помещая соответствующие описатели физических страниц в список свободных страниц, до тех пор, пока количество страниц в этом списке не достигнет установленного в системе верхнего предела. После завершения полного своппинга каждого процесса одному из процессов из очереди к процессу-swapper дается возможность попытаться продолжить свое выполнение (в расчете на то, что свободной памяти уже может быть достаточно).

Заметим, что мы описали наиболее сложный алгоритм, когда бы то ни было использовавшийся в ОС UNIX. В последней "фактически стандартной" версии ОС UNIX (System V Release 4) используется более упрощенный алгоритм. Это глобальный алгоритм, в котором вероятность thrashing погашается за счет своппинга. Используемый алгоритм называется NRU (Not Recently Used) или clock. Смысл алгоритма состоит в том, что процесс-stealer периодически очищает признаки обращения всех страниц основной памяти, входящих в виртуальную память процессов (отсюда название "clock"). Если возникает потребность в откачке (т.е. достигнут нижний предел размера списка описателей свободных страниц), то stealer выбирает в качестве кандидатов на откачку прежде всего те страницы, к которым не было обращений по записи после последней "очистки" и у которых нет признака модификации (т.е. те, которые можно дешевле освободить). Во вторую очередь выбираются страницы, которые действительно нужно откачивать. Параллельно с этим работает описанный выше алгоритм своппинга, т.е. если возникает требование страницы, а свободных страниц нет, то соответствующий процесс становится кандидатом на своппинг.

В заключение затронем еще одну важную тему, непосредственно связанную с управлением виртуальной памятью - копирование страниц при попытке записи (copy on write). Как мы отмечали в п. 2.1.7, при выполнении системного вызова fork() ОС UNIX образует процесс-потомок, являющийся полной копией своего предка. Тем не менее, у потомка своя собственная виртуальная память, и те сегменты, которые должны быть его частными сегментами, в принципе должны были бы полностью скопироваться. Однако, несмотря на то, что частные сегменты допускают доступ и по чтению, и по записи, ОС не знает, будет ли предок или потомок реально производить запись в каждую страницу таких сегментов. Поэтому было бы неразумно производить полное копирование частных сегментов во время выполнения системного вызова fork().

Поэтому в таких случаях используется техника копирования страниц при попытке записи. Несмотря на то, что в сегмент запись разрешена, для каждой его страницы устанавливается блокировка записи. Тем самым, во время попытки выполнения записи возникает прерывание, и ОС на основе анализа статуса соответствующего сегмента принимает решение о выделении новой страницы, копировании на нее содержимого оригинальной страницы и о включении этой новой страницы на место старой в виртуальную память либо процесса-предка, либо процесса-потомка (в зависимости от того, кто из них пытался писать).

На этом мы заканчиваем краткое описание механизма управления виртуальной памятью в ОС UNIX. Еще раз подчеркнем, что мы опустили множество важных технических деталей, стремясь продемонстрировать наиболее важные принципиальные решения.

Управление процессами и нитями

В операционной системе UNIX традиционно поддерживается классическая схема мультипрограммирования. Система поддерживает возможность параллельного (или квази-параллельного в случае наличия только одного аппаратного процессора) выполнения нескольких пользовательских программ. Каждому такому выполнению соответствует процесс операционной системы. Каждый процесс выполняется в собственной виртуальной памяти, и, тем самым, процессы защищены один от другого, т.е. один процесс не в состоянии неконтроллируемым образом прочитать что-либо из памяти другого процесса или записать в нее. Однако контролируемые взаимодействия процессов допускаются системой, в том числе за счет возможности разделения одного сегмента памяти между виртуальной памятью нескольких процессов.

Конечно, не менее важно (а на самом деле, существенно более важно) защищать саму операционную систему от возможности ее повреждения каким бы то ни было пользовательским процессом. В ОС UNIX это достигается за счет того, что ядро системы работает в собственном "ядерном" виртуальном пространстве, к которому не может иметь доступа ни один пользовательский процесс.

Ядро системы предоставляет возможности (набор системных вызовов) для порождения новых процессов, отслеживания окончания порожденных процессов и т.д. С другой стороны, в ОС UNIX ядро системы - это полностью пассивный набор программ и данных. Любая программа ядра может начать работать только по инициативе некоторого пользовательского процесса (при выполнении системного вызова), либо по причине внутреннего или внешнего прерывания (примером внутреннего прерывания может быть прерывание из-за отсутствия в основной памяти требуемой страницы виртуальной памяти пользовательского процесса; примером внешнего прерывания является любое прерывание процессора по инициативе внешнего устройства). В любом случае считается, что выполняется ядерная часть обратившегося или прерванного процесса, т.е. ядро всегда работает в контексте некоторого процесса.

В последние годы в связи с широким распространением так называемых симметричных мультипроцессорных архитектур компьютеров (Symmetric Multiprocessor Architectures - SMP) в ОС UNIX был внедрен механизм легковесных процессов (light-weight processes), или нитей, или потоков управления (threads). Говоря по-простому, нить - это процесс, выполняющийся в виртуальной памяти, используемой совместно с другими нитями того же "тяжеловесного" (т.е. обладающего отдельной виртуальной памятью) процесса. В принципе, легковесные процессы использовались в операционных системах много лет назад. Уже тогда стало ясно, что программирование с неконтролируемым использованием общей памяти приносит больше хлопот и неприятностей, чем пользы, по причине необходимости использования явных примитивов синхронизации.

Однако, до настоящего времени в практику программистов так и не были внедрены более безопасные методы параллельного программирования, а реальные возможности мультипроцессорных архитектур для обеспечения распараллеливания нужно было как-то использовать. Поэтому опять в обиход вошли легковесные процессы, которые теперь получили название threads (нити). Наиболее важно (с нашей точки зрения) то, что для внедрения механизма нитей потребовалась существенная переделка ядра. Разные производители аппаратуры и программного обеспечения стремились как можно быстрее выставить на рынок продукт, пригодный для эффективного использования на SMP-платформах. Поэтому версии ОС UNIX опять несколько разошлись.

Все эти вопросы мы обсудим более подробно в данном разделе.

Пользовательская и ядерная составляющие процессов

Каждому процессу соответствует контекст, в котором он выполняется. Этот контекст включает содержимое пользовательского адресного пространства - пользовательский контекст (т.е. содержимое сегментов программного кода, данных, стека, разделяемых сегментов и сегментов файлов, отображаемых в виртуальную память), содержимое аппаратных регистров - регистровый контекст (регистр счетчика команд, регистр состояния процессора, регистр указателя стека и регистры общего назначения), а также структуры данных ядра (контекст системного уровня), связанные с этим процессом. Контекст процесса системного уровня в ОС UNIX состоит из "статической" и "динамических" частей. Для каждого процесса имеется одна статическая часть контекста системного уровня и переменное число динамических частей.

Статическая часть контекста процесса системного уровня включает следующее:

  1. Описатель процесса, т.е. элемент таблицы описателей существующих в системе процессов. Описатель процесса включает, в частности, следующую информацию:

    • состояние процесса;

    • физический адрес в основной или внешней памяти u-области процесса;

    • идентификаторы пользователя, от имени которого запущен процесс;

    • идентификатор процесса;

    • прочую информацию, связанную с управлением процессом.

  2. U-область (u-area) - индивидуальная для каждого процесса область пространства ядра, обладающая тем свойством, что хотя u-область каждого процесса располагается в отдельном месте физической памяти, u-области всех процессов имеют один и тот же виртуальный адрес в адресном пространстве ядра. Именно это означает, что какая бы программа ядра не выполнялась, она всегда выполняется как ядерная часть некоторого пользовательского процесса, и именно того процесса, u-область которого является "видимой" для ядра в данный момент времени. U-область процесса содержит:

    • указатель на описатель процесса;

    • идентификаторы пользователя;

    • счетчик времени, в течение которого процесс реально выполнялся (т.е. занимал процессор) в режиме пользователя и режиме ядра;

    • параметры системного вызова;

    • результаты системного вызова;

    • таблица дескрипторов открытых файлов;

    • предельные размеры адресного пространства процесса;

    • предельные размеры файла, в который процесс может писать;

и т.д.

Динамическая часть контекста процесса - это один или несколько стеков, которые используются процессом при его выполнении в режиме ядра. Число ядерных стеков процесса соответствует числу уровней прерывания, поддерживаемых конкретной аппаратурой.

Принципы организации многопользовательского режима

Основной проблемой организации многопользовательского (правильнее сказать, мультипрограммного) режима в любой операционной системе является организация планирования "параллельного" выполнения нескольких процессов. Операционная система должна обладать четкими критериями для определения того, какому готовому к выполнению процессу и когда предоставить ресурс процессора.

Исторически ОС UNIX является системой разделения времени, т.е. система должна прежде всего "справедливо" разделять ресурсы процессора(ов) между процессами, относящимися к разным пользователям, причем таким образом, чтобы время реакции каждого действия интерактивного пользователя находилось в допустимых пределах. Однако в последнее время возрастает тенденция к использованию ОС UNIX в приложениях реального времени, что повлияло и на алгоритмы планирования. Ниже мы опишем общую (без технических деталей) схему планирования разделения ресурсов процессора(ов) между процессами в UNIX System V Release 4.

Наиболее распространенным алгоритмом планирования в системах разделения времени является кольцевой режим (round robin). Основной смысл алгоритма состоит в том, что время процессора делится на кванты фиксированного размера, а процессы, готовые к выполнению, выстраиваются в кольцевую очередь. У этой очереди имеются два указателя - начала и конца. Когда процесс, выполняющийся на процессоре, исчерпывает свой квант процессорного времени, он снимается с процессора, ставится в конец очереди, а ресурсы процессора отдаются процессу, находящемуся в начале очереди. Если выполняющийся на процессоре процесс откладывается (например, по причине обмена с некоторым внешнем устройством) до того, как он исчерпает свой квант, то после повторной активизации он становится в конец очереди (не смог доработать - не вина системы). Это прекрасная схема разделения времени в случае, когда все процессы одновременно помещаются в оперативной памяти.

Однако ОС UNIX всегда была рассчитана на то, чтобы обслуживать больше процессов, чем можно одновременно разместить в основной памяти. Другими словами, часть процессов, потенциально готовых выполняться, размещалась во внешней памяти (куда образ памяти процесса попадал в результате своппинга). Поэтому требовалась несколько более гибкая схема планирования разделения ресурсов процессора(ов). В результате было введено понятие приоритета. В ОС UNIX значение приоритета определяет, во-первых, возможность процесса пребывать в основной памяти и на равных конкурировать за процессор. Во-вторых, от значения приоритета процесса, вообще говоря, зависит размер временного кванта, который предоставляется процессу для работы на процессоре при достижении своей очереди. В-третьих, значение приоритета, влияет на место процесса в общей очереди процессов к ресурсу процессора(ов).

Схема разделения времени между процессами с приоритетами в общем случае выглядит следующим образом. Готовые к выполнению процессы выстраиваются в очередь к процессору в порядке уменьшения своих приоритетов. Если некоторый процесс отработал свой квант процессорного времени, но при этом остался готовым к выполнению, то он становится в очередь к процессору впереди любого процесса с более низким приоритетом, но вслед за любым процессом, обладающим тем же приоритетом. Если некоторый процесс активизируется, то он также ставится в очередь вслед за процессом, обладающим тем же приоритетом. Весь вопрос в том, когда принимать решение о своппинге процесса, и когда возвращать в оперативную память процесс, содержимое памяти которого было ранее перемещено во внешнюю память.

Традиционное решение ОС UNIX состоит в использовании динамически изменяющихся приоритетов. Каждый процесс при своем образовании получает некоторый устанавливаемый системой статический приоритет, который в дальнейшем может быть изменен с помощью системного вызова nice (см. п. 3.1.3). Этот статический приоритет является основой начального значения динамического приоритета процесса, являющегося реальным критерием планирования. Все процессы с динамическим приоритетом не ниже порогового участвуют в конкуренции за процессор (по схеме, описанной выше). Однако каждый раз, когда процесс успешно отрабатывает свой квант на процессоре, его динамический приоритет уменьшается (величина уменьшения зависит от статического приоритета процесса). Если значение динамического приоритета процесса достигает некоторого нижнего предела, он становится кандидатом на откачку (своппинг) и больше не конкурирует за процессор.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5160
Авторов
на СтудИзбе
439
Средний доход
с одного платного файла
Обучение Подробнее