86075 (Три задачи по теории чисел)

2016-07-30СтудИзба

Описание файла

Документ из архива "Три задачи по теории чисел", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "математика" в общих файлах.

Онлайн просмотр документа "86075"

Текст из документа "86075"

Три задачи по теории чисел

Задача 1

Утверждение 1

Пусть р1, р2 и р3 являются ненулевыми рациональными числами, причем р1 + р2 = р3. Тогда произведение р1* р2 * р3 не является точным кубом никакого (отличного от нуля) рационального числа, то есть р1* р2 * р3 ≠ R3, где R – некоторое рациональное число (R ≠ 0).

Доказательство

Положим

и

Очевидно, что а (а≠0) и b - рациональные числа, так как рациональными являются числа р1 и р2 .

(Если а=0, т.е. р1 = - р2, то р1 + р2 = р3 = 0, что противоречит нашему утверждению (р3 0).

Если b=0, т.е. р1 = р2, то р3 = 2 р1 р1* р2 * р3 = р1* р1 * 2р1 =2р , т.е. р1* р2 * р3 = 2р ≠ R3 и противоречие с нашим утверждением отсутствует.)

Тогда имеем:

Теперь нетрудно выразить старые переменные через новые:

(1)

Таким образом, замена р1 и р2 на a и b является обратимой (число Р3 в обоих случаях является зависимой переменной).

Предположим теперь, что Утверждение 1 неверно, и число является точным кубом (R3) некоторого рационального числа R (R ≠ 0) .

Обозначим (2), где r 0, т.к. при r = 0 либо р1=0, либо р2=0, либо р3=0.

где q 0 (пояснение ниже).

Числа r и q являются рациональными числами, если рациональны числа a и b. Далее имеем:

Пояснение

При q=0 , где r0 0 - рациональное число (т.к. r 0).

Из (2) следует , откуда R не является рациональным числом, что противоречит условию. Следовательно, q 0.

Отсюда число является кубом некоторого ненулевого рационального числа , обозначим это число через (3), где С 0 (С > 0).

Обозначим: , тогда:

(с учетом (2) и (3)) (4)

Так как r, q – рациональные числа, то и числа A, B, (CR) -также рациональны числа.

Но тогда они будут рациональными решениями уравнения Ферма 3й степени, которое, как хорошо известно, неразрешимо в рациональных числах. Полученное противоречие доказывает наше утверждение.

Примечание. А если А = 0, или В = 0? Ведь в этом случае могут, наверно, появиться и ненулевые рациональные числа р1, р2, р3, R, удовлетворяющие условию нашего Утверждения! Покажем, что они не появятся.

Если В = r – q = 0, то r = q.

Отсюда, учитывая

имеем ) = 0

откуда следует не только из

r = q (что ожидаемо), но и r = 0 r = q = 0 R=0, что противоречит условию нашего «Утверждения», ч.т.д.

Для А = r + q = 0 рассуждения аналогичные.

Теперь сформулируем некоторое обобщение нашего Утверждения 1 на рациональные функции. Напомним, что рациональной функцией называется выражение вида , где p(x) и q(x) – некоторые многочлены. Заметим, что и многочлены и даже числа являются частным случаем рациональных функций при соответствующем выборе коэффициентов многочленов p(x) и q(x).

Утверждение 2

Пусть являются рациональными функциями с рациональными коэффициентами, причём для всех x. Тогда функция ни в одной рациональной точке x не является кубом никакого (отличного от нуля) рационального числа, то есть
либо , где R – рациональное число (R ≠ 0);
либо , где R(x) – рациональная функция, которая при каждом фиксированном рациональном x является рациональным числом.

Доказательство

Действительно, при каждом фиксированном рациональном x мы получаем утверждение для рациональных чисел, которое сформулировано в предыдущем Утверждении 1, что и требовалось доказать.

Утверждение 3

Пусть являются рациональными функциями с рациональными коэффициентами от нескольких переменных x, y, z,…, причем для всех x, y, z,….

Тогда функция ни в одной из рациональных точек x, y, z,… не является кубом никакого (отличного от нуля) рационального числа, то есть либо:

где R - рациональное число (R ≠ 0);

либо

где R(x,y,z,…) – рациональная функция, которая при каждом фиксированном рациональном x, y, z,… является рациональным числом.

Доказательство

Действительно, при каждом фиксированном рациональном x, y, z,… мы получаем утверждение для рациональных чисел, то есть Утверждение 1, что и требовалось доказать.

Где и как можно использовать вышеприведенные утверждения?

Для анализа неразрешимости некоторых уравнений в рациональных числах практически по внешнему виду.

Примеры:

  1. - куб рациональной функции R(x) = 3x2, которая при рациональном x является рациональным числом. Следовательно, уравнение неразрешимо в рациональных числах.

  1. - куб рациональной функции R(x) = неразрешимо в рациональных числах.

  1. - куб рационального числа 3, отсюда неразрешимо в рациональных числах

  1. - куб рациональной функции R(x,y) = не разрешимо в рациональных числах

  1. - куб рациональной функции R(x) = х37 => уравнение не разрешимо в рациональных числах.

Следовательно, система уравнений неразрешима в ненулевых рациональных числах x, y, z , где R – рациональное число (R≠0).

Задача 2

Утверждение 1

Пусть р1, р2, р3 и р4 являются рациональными ненулевыми числами, причем (1). Тогда произведение не может равным ни , то есть не может выполняться соотношение

(2)

где = 1;2;3;4 и если - рациональное число.

Доказательство

Положим . Очевидно, x, y и z – это рациональные ненулевые числа, так как рациональными ненулевыми числами являются р1, р2, р3 . Так как р1, р2, р3 в (1) и (2) равноправны, то за в (2) мы можем принять любое из них, т.е. = 1;2;3. Пусть для определенности (3), тогда р4 на основании (1) принимает вид:

(4)

Таким образом, замена р1, р2, р3 на x, y и z является обратимой (число р4 в обоих случаях является зависимой переменной).

Предположим теперь, что Утверждение 1 неверно, и число

Тогда имеем:

(5)

где x, y и z – ненулевые рациональные числа, а (5) равносильно

(6)

Действительно, можно из уравнения (6) получить (5):

, (6)

, ,

,

(5), что и требовалось доказать.

Обозначим . Тогда (6) примет вид: . Так как x, y и z - рациональные числа, то и числа A, B и C также рациональные числа. Но тогда они будут рациональными решениями уравнения Ферма 3-й степени , которое, как хорошо известно, неразрешимо в рациональных числах.

Полученное противоречие доказывает наше утверждение.

Примечание:

1). Легко понять, что суммой P4 в (1) может быть являться любое из слагаемых (например: ), а произведение новых членов остается прежним, то есть

,

где i может принимать и значение 4, тогда в произведении

2). . А если А = 0, или В = 0? Ведь в этом случае могут, наверно, появиться и ненулевые рациональные числа р1, р2, р3, R, удовлетворяющие условию нашего Утверждения! Покажем, что они не появятся.

Случаи, когда А=0, или В=0, противоречат нашему утверждению.

Действительно, если, например,

то из В = С

= x = 0 x = 0 х=0, что противоречит нашему утверждению.

Аналогичные рассуждения и для В=0.

Утверждение 2

Пусть являются рациональными функциями с рациональными коэффициентами, причем для всех x. Тогда функция ни в одной рациональной точке x не может быть равной ни , то есть не может выполняться соотношение .

Доказательство

Действительно, при каждом фиксированном рациональном x мы получаем утверждение для рациональных чисел, которое сформировано в предыдущем Утверждении 1, что и требовалось доказать.

Утверждение 3.

Пусть являются рациональными функциями с рациональными коэффициентами от нескольких переменных x, y, z , …, причем для всех x, y, z, …. Тогда функция ни в одной из рациональных точек x, y, z, … не может быть равной ни

то есть не может выполняться соотношение

где i=1;2;3;4

Доказательство

Действительно, при каждом фиксированном рациональном x, y, z, … мы получаем утверждение для рациональных чисел, то есть Утверждение 1, что и требовалось доказать.

Где и как можно использовать вышеприведенные утверждения?

Для анализа разрешимости некоторых уравнений в рациональных числах практически по внешнему виду.

Примеры

1.

где x2 – второе слагаемое, которое при рациональном x является рациональным числом => уравнение не разрешимо в рациональных числах.

2.

где x – второе слагаемое, которое при рациональном x – рациональное число. не разрешимо в рациональных числах.

3.

где y – третье слагаемое, которое при рациональном y – рациональное число не разрешимо в рациональных числах.

Следствие

Система уравнений

неразрешима в рациональных числах, где - переменные (не равные 0).

Задача 3

Утверждение (n=3) Уравнение

a3 = b2 + cd2 (1)

где с = const, имеет следующее решение:

a = α2 + cβ2 b = α3 - 3cαβ2 d = 3α2β - cβ3

где α и β - произвольные числа.

Доказательство

Рассмотрим тождество

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5160
Авторов
на СтудИзбе
439
Средний доход
с одного платного файла
Обучение Подробнее