86075 (Три задачи по теории чисел), страница 2

2016-07-30СтудИзба

Описание файла

Документ из архива "Три задачи по теории чисел", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "математика" в общих файлах.

Онлайн просмотр документа "86075"

Текст 2 страницы из документа "86075"

(2) (x2+cy2)(u2+cυ2)≡(xu-cyυ)2+c(xυ+yu)2

где с = const (некоторое число); x,y,u,υ - переменные (произвольные числа).

Если один из 2x сомножителей в скобках левой части тождества (2) является квадратом другого (например: (x2+cy2)2=u2+cυ2), то тождество (2) можно записать не через четыре переменных x,y,u,υ, а только через две (α и β), где α и β-другие переменные.

Действительно, если (x2+cy2)2=u2+cυ2 (3), общий вид которого

(4) a12=u2+cυ2 (случай, когда(n=2)), а его решения (это специалистам известно):

(5) a12+cβ2,

(6) u=α2-cβ2,

(7) υ=2αβ, где α и β-произвольные числа ((эти решения специалистам известны).

(Действительно, если в (4) подставить его решения (5), (6) и (7), то получим тождество: (α2+cβ2)2 ≡ (α2-cβ2)2+c(2αβ)2 (8). Следовательно, имеем следующее:

(9) x2+cy22+cβ2

(6) u=α2-cβ2

(7) υ=2αβ

Уравнение (9) обращается в тождество при x=α (10) и y=β (11), значит

(10) и (11) являются решениями (9).

Учитывая (3), тождество (2) запишется в виде уравнения:

(x2+cy2)(x2+cy2)2=(xu-cyυ)2+c(xυ+yu)2=>

=> (12) (x2+cy2)3=(xu-cyυ)2+c(xυ+yu)2

Учитывая (6), (7), (10) и (11), уравнение (12) запишется:

2+сβ2)3=[α·(α2-cβ2)-cβ·2αβ]2+c[α·2αβ+β(α2-cβ2)]2=

=[α3-cαβ2-2cαβ2]2+c[2α2β+βα2-cβ3]2=(α3-3cαβ2)2+c(3α2β-cβ3)2 =>

=> (13) (α2+cβ2)3≡(α3-3cαβ2)2+c(3α2β-cβ3)2

где α и β - произвольные.

Т.к. (13) - тождество, то решением уравнения (1) a3 = b2 + cd2 (случай, когда(n=3)), являются:

а = α2 + cβ2 b = α3 - 3cαβ2

d = 3α2β - cβ3, где α и β - произвольные числа, ч.т.д..

Утверждение 2. (n = 2;3;4;5;6;7)

Уравнение an=b2+cd2 (1), где c = const, имеет следующее решение:

a=α2+cβ2

b=αn3n-2β25c2αn-4β47c3αn-6β6+…

d=nαn-1β-κ4n-3β36c2αn-5β58c3αn-7β7+…,

где κi - биноминальные коэффициенты степени n, где i = 3;4;5;6;7;8;…;

κ 1=1 - первые два биноминальных коэффициента в

κ2= п биноме Ньютона при αn и αn-1β;

n - натуральная степень (n>1).

Доказательство

(методом анализа частных случаев, когда n = 2;3;4;5;6;7)

I этап

Рассмотрим частные случаи.

Нам уже известны решения уравнения (1) an=b2+cd2 для степени n=2 и n=3 (смотри доказательствоУтверждение1).

n = 2

(2) a2 = b2 + cd2, где

a2+cβ2

b=α2-cβ2 (2') - при этих значениях a, b и c уравнение (2) превращается в d=2αβ тождество (α2+cβ2)2 ≡ (α2-cβ2)2+c(2αβ)2 (2'').

n=3

(3) a3=b2+cd2,

где

a=α2+cβ2

b=α3-3cαβ2 (3') - при этих значениях a,b и c уравнение (3) превращается в d=3α2β-cβ3 тождество (α2+сβ2)3 ≡ (α3-3сαβ2)2+с(3α2β-сβ3)2 (3'').

Пример: при α = β = 1 и c=2 имеем верное равенство:

(1+2·1)3 = (1-3·2·1)2 + 2·(3-2·1)2 33 ≡ 52 +2·12

Напомню, что при нахождении решения уравнения (1) для степени n = 3 мы в доказательстве Утверждения1опирались на тождество (2)

(x2+cy2)(u2+cυ2) ≡ (xu-cyυ)2+c(xυ+yu)2,

и на решение уравнения (1) второй степени, т.е. степени на единицу меньшую. Аналогичным методом можно найти решение уравнения (1) для других натуральных степеней n.

n=4

П усть в тождестве (2) (x2+cy2)(u2+cυ2) ≡ (xu-cyυ)2+c(xυ+yu)2

a = x2+cy2

a3 = u2+cυ2 (5)

тогда имеем соотношение (x2+cy2)3 = u2+cυ2 (6), которое есть ничто иное, как уравнение (1) с n=3: a3 = b2 + cd2 (3) (см. случай n=3).

Учитывая (3') и (6), получаем:

а = x2+cy2 = α2+cβ2 (7')

u = α3-3cαβ2 (7) (7'')

υ = 3α2β-cβ3 (7''')

Учитывая формулы (10) и (11) в доказательстве Утверждения1 (x=α , y=β (8)) при нахождении решения уравнения (1) для n=3, автоматически распространим его и при нахождении решения уравнения (1) для n>3. Тогда, с учетом (5) тождество (2) принимает вид:

a4 = (xu-cyυ)2 + c(xυ+yu)2 => a4 = b2 + cd2 (9)

где

a = x2+cy2

b = xu-cyυ (10)

d = xυ+yu

Учитывая (8), (7'),…, (7'''), запишем a, b, d в системе (10) через α и β:

a = α2+cβ2

b =xu-cyυ=α(α3-3cαβ2)-cβ(3α2β-cβ3)=α4-3cα2β2-3cα2β2+c2β4 = α4-6cα2β2+c2β4

d = xυ+yu=α(3α2β-cβ3)+β(α3-3cαβ2)=3α3β-cαβ3+βα3-3cαβ3 = 4α3β-4cαβ3

Итак, уравнение (9) a4=b2+cd2 имеет следующее решение:

a = α2 + cβ2

b = α4-6cα2β2+c2β4 (11) и соответствующее тождество:
d = 4α3β - 4cαβ3

(12) (α2+сβ2)4≡(α4-6сα2β22β4)2+с(4α3β-4сαβ3)2

Пример:

при α = β = 1 и с = 2 => 34 = (1-12+4)2+2·(4-8)2 => 81 ≡ 49 + 32.

n=5

Рассуждения аналогичны.

Пусть в тождестве (2) (x2+cy2)(u2+cυ2) ≡ (xu-cyυ)2+c(xυ+yu)2

a = x2+cy2 (13)

тогда получаем соотношение:

a4 = u2+cυ2

(x2+cy2)4 = u2+cυ2 которое есть ничто иное, как уравнение (1) с n=4: (9) a4=b2+cd2) (см. случай n=4), решение которого есть система (11). Отсюда:

a =x2+cy22+cβ2

u =α4-6cα2β2+c2β4 (14)

υ =4α3β-4cαβ3

С учетом (13) тождество (2) принимает вид:

a5 = (xu-cyυ)2 + c(xυ+yu)2 => a5=b2+cd2 (15)

где

a = x2+cy2

b = xu-cyυ (16)

d = xυ+yu

Учитывая (8) (x=α , y=β) и (14), запишем a,b,d в системе (16) через переменные α и β:

a = α2 + cβ2

b = xu-cyυ =α(α4-6cα2β2+c2β4)-cβ·(4α3β-4cαβ3)=

5-6cα3β2+αc2β4-4cα3β2+4c2αβ4 = α5-10cα3β2+5c2αβ4

d = xυ+yu =α(4α3β-4cαβ3)+β(α4-6cα2β2+c2β4)=

=4α4β-4cα2β34β-6cα2β3+c2β5 = 5α4β-10cα2β3+c2β5

Итак, уравнение (15) a5=b2+cd2 имеет следующие решения:

a2+cβ2

d=5α4β-10cα2β3+c2β5 (17)

b=α5-10cα3β2+5c2αβ4

и соответствующее тождество:

2+cβ2)5=(α5-10cα3β2+5c2αβ4)2+c(5α4β-10cα2β3+c2β5)2 (18)

Пример:

при α=β=1 и с=2 =>

=> 35 = (1-20+20)2 +2·(5-20+4)2 = 12+2·112 => 35 = 12 +2·112= 243

n=6

Решение уравнения a6=b2+cd2 (19) находятся аналогично. Доказательство опирается на известные решения уравнения предыдущей степени, т.е. n=5. Уравнение (19) имеет следующее решение:

a = α2 + cβ2

b = α6 - 15cα4β2 + 15c2α2β4 - c3β6 (20)

d = 6α5β - 20cα3β3 + 6c2α

и соответствующее тождество:

2 + cβ2)6 = (α6 - 15cα4β2 + 15c2α2β4 - c3β6)2 + c(6α5β - 20cα3β3 + 6c2αβ5)2 (21)

Пример:

при α = β = 1 и c = 2 имеем:

36=(1- 30 + 60 - 8)2 + 2(6 – 40 + 24)2 =

= 232 + 2 × (-10)2 => 36 ≡ 232 + 2 × (-10)2 ≡ 725.

n=7

Аналогичные рассуждения приводят к тому, что уравнение

(22) a7 = b2 + cd2 имеет следующее решение:


a = α2 + cβ2

b = α7 - 21cα5β2+ 35c2α3β4 - 7c3αβ6 (23)

d = 7α6β - 35cα4β3 + 21c2α2β5 – c3β

а соответствующее тождество:

(24) (α2 + cβ2)7

≡(α7- 21cα5β2 + 35c2α3β4-7c3α6β7)2 +24+ c(7α6β - 35cα4β3 + 21c2α2β5 – c3β7)

Пример:

при α = β = 1 и c = 2 имеем:

37 = (1- 42 + 140 - 56)2 + 2(7 – 70 + 84 - 8)2 =

= 432 + 2×132 => 37≡ 432 + 2×132 ≡ 2187.

ІІ этап

Получение общего решения уравнения

(1) an=b2 + cd2

(Напомним, доказательство не строгое, опирается на частные случаи)

Выпишем все тождества, полученные для каждой степени

n = 2; 3; 4; 5; 6; 7;

n = 2

2+cβ2)2 = (α2 – cβ2)2 + c(2αβ)2

n = 3

2+cβ2)3 = (α3 - 3cαβ2)2+c(3α2β – cβ3)2

n = 4

2+cβ2)4 = (α4 - 6cα2β2+c2β4)2+c(4α3β – 4cαβ3)2

n = 5

2+cβ2)5 = (α5 - 10cα3β2+5c2αβ4)2+c(5α4β – 10cα2β3+c2β5)2

n = 6

2+cβ2)6 = (α6 - 15cα4β2+15c2α2β4-c3β6)2+c(6α5β – 20cα3β3+6c2αβ5)2

n = 7

2+cβ2)7 = (α7 - 21cα5β2+35c2α3β4-7c3αβ6)2+c(7α6β –

-35cα4β3+21c2α2β5-c3β7)2

Анализируя эти тождества, приходим к общему тождеству общего уравнения

an = b2 + cd2 (1) :

2 + cβ2)n = (αn – k3n-2β2 + k5c2αn-4β4 – k7c3αn-6β6 +…)2 +

+ c(nαn-1β – k4n-3β3 + k6c2αn-5β5 – k8c3αn-7β7)2 (25)

г де в правой части тождества 25 в обеих скобках слагаемые представляют собой слагаемые бинома Ньютона

(α + β)n, умноженных на ±cm, где m = 0,1,2,3…,

знак «+», если m-четное,

k i – биноминальные коэффициенты, где i= 3,4,5,…,

k1 = 1 - первые два биноминальных коэффициента при αn и αn-1β.

k2 = n

Глядя на уравнение (1) и тождество (25), определяем, что решением уравнения (1) an = b2 + cd2 являются:

a = α2 + cβ2

b = αn – k3n-2β2 + k5c2αn-4β4 – k7c3αn-6β6 +…

d = nαn-1β – k4n-3β3 + k6c2αn-5β5 – k8c3αn-7β7 +…, ч.т.д.

Утверждение. ( n>1-любое натуральное)

Уравнение an = b2 + cd2 (1), где c = const, имеет следующее решение:

a = α2 + cβ2

(2) b = αn – k3n-2β2 + k5c2αn-4β4 – k7c3αn-6β6 +…

d = nαn-1β – k4n-3β3 + k6c2αn-5β5 – k8c3αn-7β7 +…,

ki – биноминальные коэффициенты степени n,

где i = 3; 4; 5; 6; 7; 8…,

k 1 = 1 первые два биноминальных

k2 = n коэффициента для степени n,

n – натуральная степень (n > 1)

Общее доказательство

(Метод математической индукции)

Итак, нами доказана справедливость найденного решения (2)

уравнения (1) для степеней n = 2; 3; 4; 5; 6; 7.

Предположим, что решение (2) справедливо и для степени n–1.

Тогда, обозначив биноминальные коэффициенты для этой степени ki/n-1, где i = 1; 2; 3…, (k1/n-1 = 1, k2/n-1 = n-1), можно записать тождество:

(3) (α2 +cβ2)n-1

n-1 – k3/n-1n-3β2 + k5/n-1c2αn-5β4 – k7/n-1c3αn-7β6 +…)2 +

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
428
Средний доход
с одного платного файла
Обучение Подробнее