151687 (Емкость резкого p-n перехода)

2016-07-30СтудИзба

Описание файла

Документ из архива "Емкость резкого p-n перехода", который расположен в категории "". Всё это находится в предмете "физика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "физика" в общих файлах.

Онлайн просмотр документа "151687"

Текст из документа "151687"

ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Кафедра микроэлектроники

Курсовая работа

по курсу ФОМ

Тема

Емкость резкого p-n перехода

г. Пенза, 2005 г.

Содержание


Задание

Обозначение основных величин

Основная часть

1. Расчет собственной концентрации электронов и дырок

2. Расчет контактной разности потенциалов

3. Расчет толщины слоя объемного заряда

4. Расчет барьерной емкости

Список используемой литературы

Задание

1. Вывести выражение для емкости резкого p-n перехода в случае полностью ионизированных примесей

2. Рассчитать величину барьерной емкости резкого p-n перехода при 300 К и напряжении V. Считать что примеси полностью истощены, а собственная проводимость еще очень мала.

3. Построить график зависимости барьерной емкости от температуры.

4. Составить программу вычисления значений барьерной емкости для графика.

Полупроводник

Ge

V ,В

0

Nd ,см

1,0 10

Na ,см

1,0 10

S ,мм

0,15

Обозначение основных величин

E – ширина запрещенной зоны.

[E] =1,8 10 Дж=1,13 эВ.

– электрическая постоянная.

=8,86 10 .

– подвижность электронов.

[ ]=0,14 м /(В с)

– подвижность дырок.

[ ]=0,05 м /(В с)

m – эффективная масса электрона.

m =0,33 m =0,33 9,1 10 =3,003 10 кг

m – эффективная масса дырки.

m =0,55

m =0,55 9,1 10 =5,005 10 кг

m – масса покоя электрона.

m =9,1 10 кг.

– время релаксации электрона.

=2 10 с.

– время релаксации дырки.

=10

с.

S – площадь p-n перехода.

[S]= 10 мм

n – собственная концентрация электронов.

[n ]=м

p – собственная концентрация дырок.

[p ]=м

N – эффективное число состояний в зоне проводимости, приведенное ко дну зоны.

[N ]=м

N – эффективное число состояний в валентной зоне, приведенное к потолку зоны.

[N ]=м

k – константа Больцмана.

k = 1,38 10 .

Т – температура.

[T]=K.

- число Пи.

=3,14.

h – константа Планка.

h = 6,63 10 Дж с.

V –контактная разность потенциалов.

[V ]=B.

– потенциальный барьер.

[ ]=Дж или эВ.

q – заряд электрона.

q=1,6 10 Кл.

n – концентрация донорных атомов в n-области.

[n ]=[N

]=2,0 10 м

p – концентрация акцепторных атомов в p-области.

[p ]=[N

]=9,0 10 м

– диэлектрическая проницаемость.

=15,4

d – толщина слоя объемного заряда.

[d]=м.

N – концентрация акцепторов.

[N ]=1,0 10 см

N – концентрация доноров.

[N ]=1,0 10 см

V – напряжение.

[V]=0 В.

C – барьерная емкость.

[C ]=Ф.

– удельная барьерная емкость.

[ ]= Ф/м

– уровень Ферми.

[ ]=Дж или эВ.

  1. Расчет собственной концентрации электронов и дырок

Е Е+dЕ

Зона проводимости

Е

  1. Е

-


Е



-

Е

Валентная зона.

Рис.1.Положение уровня Ферми в невырожденном полупроводнике.

На рис. 1 показана зонная структура невырожденного полупроводника. За нулевой уровень отсчета энергии принимают обычно дно зоны проводимости Е . Так как для невырожденного газа уровень Ферми должен располагаться ниже этого уровня, т.е. в запрещенной зоне, то является величиной отрицательной (- >>kT). При температуре Т, отличной от абсолютного нуля, в зоне проводимости находятся электроны, в валентной зоне – дырки. Обозначим их концентрацию соответственно через n и p. Выделим около дна зоны проводимости узкий интервал энергий dЕ, заключенный между Е и Е+dЕ. Так как электронный газ в полупроводнике является невырожденным, то число электронов dn, заполняющих интервал энергии dЕ (в расчете на единицу объема полупроводника), можно определить, воспользовавшись формулой :

N(E)dE= (2m) e E

dE

dn= (2m ) e e E

dE

где m – эффективная масса электронов, располагающихся у дна зоны проводимости.

Обозначим расстояние от дна зоны проводимости до уровня Ферми через -, а от уровня Ферми до потолка валентной зоны через -. Из рис. 1 видно, что

,

Е +

где Е (

Е) - ширина запрещенной зоны.

E =Е +bТ

Полное число электронов n, находящихся при температуре Т в зоне проводимости, получим, интегрируя (1.2) по всем энергиям зоны проводимости, т.е. в пределах от 0 до Е :

n=4

Так как с ростом Е функция exp(-E/kT) спадает очень быстро, то верхний предел можно заменить на бесконечность:

n=4

Вычисление этого интеграла приводит к следующему результату:

n=2 exp (1.5)


Введем обозначение

N =2(2 m kT/h

) (1.6)

Тогда (1.5) примет следующий вид:

n=N exp( /kT) (1.7)

Множитель N в (1.7) называют эффективным числом состояний в зоне проводимости, приведенным ко дну зоны. Смысл этого числа состоит в следующем. Если с дном зоны проводимости, для которой Е=0, совместить N состояний, то, умножив это число на вероятность заполнения дна зоны, равную f (0)=exp(

/kT), получим концентрацию электронов в этой зоне.

Подобный расчет, проведенный для дырок, возникающих в валентной зоне, приводит к выражению:

p=2 exp

=N exp = N exp (1.8)

где

N =2 (1.9)

– эффективное число состояний в валентной зоне, приведенное к потолку зоны.

Из формул (1.7) и (1.8) следует, что концентрация свободных носителей заряда в данной зоне определяется расстоянием этой зоны от уровня Ферми: чем больше это расстояние, тем ниже концентрация носителей, так как и отрицательны.

В собственных полупроводниках концентрация электронов в зоне проводимости n равна концентрации дырок в валентной зоне p , так как

каждый электрон, переходящий в зону проводимости, «оставляет» в валентной зоне после своего ухода дырку. Приравнивая правые части соотношения (1.5) и (1.8), находим

2 exp =2 exp

Решая это уравнение относительно , получаем

= +

kT ln (1.10)

Подставив из (1.10) в (1.5) и (1.7), получим

n =p =2 exp =(N

N ) exp (1.11)

Из формулы (6.12) видно, что равновесная концентрация носителей заряда в собственном полупроводнике определяется шириной запрещенной зоны и температурой. Причем зависимость n и p от этих параметров является очень резкой.

Рассчитаем собственную концентрацию электронов и дырок при Т=300К.

Eg=(0,782-3,9 10 300)1,6 10-19 =1,064 10-19 Дж

N =2(2 m kT/h

) =2 =2

= =2 =4,7 10 (см )

N =2 =2

=2 =10,2 10 (см )

n =p =(N N ) exp = =

6,92 10

2 10 =13,8 10 (см )

2. Расчет контактной разности потенциалов

Для n-области основными носителями являются электроны, для p-области – дырки. Основные носители возникают почти целиком вследствие ионизации донорных и акцепторных примесей. При не слишком низких температурах эти примеси ионизированы практически полностью, вследствие чего концентрацию электронов в n-области n можно считать равной концентрации донорных атомов: n N

, а концентрацию дырок в p-области p – концентрация акцепторных атомов в p-области: p N .

Помимо основных носителей эти области содержат не основные носители: n-область – дырки (p ), p-область – электроны (n

). Их концентрацию можно определить, пользуясь законом действующих масс:

n p = p

n =n .

Как видим, концентрация дырок в p-области на 6 порядков выше концентрации их в n-области, точно так же концентрация электронов в n-области на 6 порядков выше их концентрации в p-области. Такое различие в концентрации однотипных носителей в контактирующих областях полупроводника приводит к возникновению диффузионных потоков электронов из n-области в p-область и дырок из p-области в n-область. При этом электроны, перешедшие из n- в p-область, рекомбинируют вблизи границы раздела этих областей с дырками p-области, точно так же дырки, перешедшие из p- в n-область, рекомбинируют здесьс электронами этой области. В результате этого в приконтактном слое n-области практически не остается свободных электронов и в нем формируется неподвижный объемный положительный заряд ионизированных доноров. В приконтактном слое p-области практически не остается дырок и в нем формируется неподвижный объемный отрицательный заряд ионизированных акцепторов.

Неподвижные объемные заряды создают в p–n-переходе контактное электрическое поле с разностью потенциалов V , локализованное в области перехода и практически не выходящее за его пределы. Поэтому вне этого слоя, где поля нет, свободные носители заряда движутся по-прежнему хаотично и число носителей, ежесекундно наталкивающихся на слой объемного заряда, зависит только от их концентрации и скорости теплового движения. Как следует из кинетической теории газов, для частиц, подчиняющихся классической статистике Максвела–Больцмана, это число nопределяется следующим соотношением:

n= n S, (2.1)

где n - концентрация частиц; - средняя скорость теплового движения; S – площадь, на которую они падают.

Неосновные носители – электроны из p-области и дырки из n-области, попадая в слой объемного заряда, подхватываются контактным полем V и переносятся через p–n-переход.

Обозначим поток электронов, переходящих из p- в n-область, через n , поток дырок, переходящих из n- в p-область, через p .

Согласно (2.1) имеем

n =

n

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Нашёл ошибку?
Или хочешь предложить что-то улучшить на этой странице? Напиши об этом и получи бонус!
Бонус рассчитывается индивидуально в каждом случае и может быть в виде баллов или бесплатной услуги от студизбы.
Предложить исправление
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5137
Авторов
на СтудИзбе
441
Средний доход
с одного платного файла
Обучение Подробнее