Глава 5 (Учебник - информационные системы), страница 14

2013-09-22СтудИзба

Описание файла

Файл "Глава 5" внутри архива находится в папке "Учебник - информационные системы". Документ из архива "Учебник - информационные системы", который расположен в категории "". Всё это находится в предмете "информационные устройства и системы" из 9 семестр (1 семестр магистратуры), которые можно найти в файловом архиве МГТУ им. Н.Э.Баумана. Не смотря на прямую связь этого архива с МГТУ им. Н.Э.Баумана, его также можно найти и в других разделах. Архив можно найти в разделе "книги и методические указания", в предмете "информационные устройства и системы" в общих файлах.

Онлайн просмотр документа "Глава 5"

Текст 14 страницы из документа "Глава 5"

где n, n - показатели преломления оптических сред, m - коэффициент пропускания света.

Полем зрения называется та часть пространства предметов, которая видна или изображается с помощью данной оптической системы. Поле зрения измеряется в угловой и линейной мерах (например, 60о - для проекционных объективов или 0,5 мм - для микроскопов). Величина поля зрения зависит от апертуры и огра­ни­чи­ва­ет­ся полевой диафрагмой.

Глаз имеет большой угол зрения 1250 по вертикали и 1500 - по горизонтали. Однако, область резкого зрения, ограниченная желтым пятном, не превышает 6 ... 80 (рис.5.64). Угол «качественного стереозрения» человека составляет 60 ... 700.

Апертурой (от латинского «от­кры­тый») называется действующее отверстие оптической системы, определяемое размерами линз и диафрагмами (рис. 5.66). В расчетах чаще всего используется угловая апертура , под которой понимают угол между крайним лучом первой линзы и ее оптической осью.

Разрешающая способность связана со свойством оптической си­с­темы, воспроизводить раздельно две точки. Она также может определяться в угловых р и линейных K единицах. В первом случае справедлива при­ближенная формула Рэлея:

Здесь d - диаметр входного зрачка.

Разрешающая способность определяется с помощью тест-объ­ек­тов, называемых мирами. Различают штриховые миры (миры Фуко) и радиальные.

Разрешающая способность глаза зависит от диаметра зрачка (1,5 ... 8 мм) и растет с увеличением последнего. Она максимальна при освещенности 50 лк и длины волны излучения равной 0,55 мкм. В среднем р составляет 1’, однако, может достигать 10.

5.4.3. Элементы и схемы оптических локационных систем

В настоящее время в системах навигации обычно используются оптронные ОЛС (для ближнего радиуса действия) и лазерные - для дальнего. Информативным параметром является величина сигнала, регистрируемого приемником ОЛС, зависящая, в том числе, и от яркости L объекта. Для системы, работающей в отраженном свете уро­вень принимаемого сигнала пропорционален отража­ю­щей поверхности объекта или его kотр. Следовательно, сигнал от объекта с большей отражающей способностью, будет выше и, например, белый объект будет казаться бли­же черного.

Датчики оптронных ОЛС строятся на основе твердотельных фотооптических пре­образователей (напри­мер, оптронной пары типа светодиод - фотодетектор с открытым оптическим каналом), работающих, как пра­вило, в ИК диапазоне. Качество обнаружения (де­тек­тиро­ва­ния) определяется следу­ю­щими параметрами: мощностью и направленностью излучения, спектральной характеристикой первичных пре­­образователей (излучающего диода - на стороне излучателя и фото­детектора на стороне приемника) и свойствами отражающей поверхности объекта.

Излучатели и приемники ОЛС состоят из двух основных функциональных блоков: первичного преобразователя и оптической системы.

П ервичные преобразователи оптронных ОЛС строятся по тем же схемам, что и преобразователи оптических датчиков положения. Как правило, для излучения света применяются полупроводниковые светодиоды, использующие явление элек­тро­лю­ми­несцен­ции. Их изготавливают на базе фосфида и арсенида галлия (обеспечивая, при этом КПД до 25%), карбида кремния. В оптических системах для приема светового сиг­нала чаще всего используются фото­транзи­сто­ры, действие которых основано на внут­реннем фотоэффекте или фотоумножители с малыми значениями темнового то­ка ( 0,1 мкА) и постоянной времени (10-2 мкс). Фототранзисторы обладают высокой чувствительностью и линейной фун­кцией преобразования.

Оптическая система, входящая в состав излучателей и приемников оптронных ОЛС предназначена для формирования направленного светового потока и получения изображения объекта. Она, как правило, строятся по схеме «объектив-конденсор».

Объективом обычно называется ближняя к объ­екту ли­н­за (или система линз), дающая его обратное действите­ль­ное изображение. Появление объектива датируется 1840 г., когда венский оптик Й. Петцваль рассчитал первый прибор, который затем использовал для получения портретных изображений. (Его объектив был четырехлинзовым, линзы име­ли большие размеры и выполнялись из двух сортов стекла).

Современный объектив (рис. 5.68) характеризуется:

  • фокусным расстоянием F (1 ... 10000 мм);

  • углом поля зрения (до 1700);

  • светосилой SF или относительным отверстием r = d/F (r = 1:1 ... 1:30).

Кроме объектива в оптической системе может использоваться и окуляр - обычно ближняя к глазу линза (или несколько линз), образующая действительное изображение.

Объектив используется не только на передающей, но и на приемной стороне. Его важнейшая характеристика - фокусное расстояние характеризует величину поля зрения. Чем меньше F, тем больше зона обзора, но меньше разрешающая способность. Следовательно, для каждой конкретной задачи необходимо подбирать объектив с требуемым фокусным расстоянием. Объектив обычно содержит заслонку с отверстием, ограни­чива­ю­щую пучок лучей - диафрагму. (Диафрагмой глаза, например, изменяющей размер зрачка в пределах 1,5 … 8 мм, является его радужная оболочка). Диа­фраг­ма, проходящая через точку пересечения главного луча с оптической осью (в системе с одной линзой она является ее «оп­равой») называется апе­р­турной. Ее изображением в простран­­стве пре­д­ме­тов и изображений являются входной и выходной зрачок, соответст­венно. Характеристикой апертуры является угол поля зрения (или угловое поле зрения) определяется размером диагонали кадра изображения и фокусным расстоянием объектива. Так, для обычных объективов = 45 … 600 (рис. 5.68а), объективы с мень­шим фокусным расстоянием называются широкоугольными (рис. 5.68в); для них характерно большее угловое поле (до 1700), и, наконец, телеобъективы или длиннофокусные объективы (рис. 5.68б) имеют угловое поле 5 … 300. В некоторых источниках, в основу разделения объективов по фокусному расстоянию по­ло­жен параметр F* равный отношению фокусного расстояния к диагонали изображения. Объективы с F* < 0,9 называются короткофокусными, с F* > 1,5 - длиннофокусными. Таким образом, с помощью короткофокусных объективов можно увидеть большую зону, чем с помощью длиннофокусных, но с меньшими подробностями.

К ачество объектива определяется всеми компонентами, образующими его оптическую систему. Так, каждой из линз объектива свойственна абер­рация - нелинейное искажение изображения, обу­слов­ленное отклонением свойств реальной линзы от идеальной. Частичная компенсация аберраций достигается в объективах с несколькими линзами (например, склеенными или выполненными из разных материалов), а также применением зеркальных систем, как в фотообъективах. Однако, при малых значениях относительного отверстия и угла поля зрения (r < 1:12 и = 1 … 3о) аберрации практически отсутствуют. Такие объективы используются в качестве тестовых.

Применительно к объективам светосила определяется выражением: SF = r2m. Иногда ее вычисляют через относительное отверстие r, величину равную отношению диаметра отверстия диафрагмы d к фокусному расстоянию F. (Например, если диаметра действующего отверстия диафрагмы объектива 25 мм, а его фокусное расстояние 50 мм, то говорят, что его светосила составляет 1:2). Для увеличения светосилы в боль­шин­стве современных объективов с автодиафрагмой используются специальные фильтры с «центральным пятном». Относительное отверстие определяет и разрешающую спо­собность объектива. Для нахождения линейной разрешающей способности K существует эмпирическая зависимость:

K = 1473/N. Размерность K - линий/мм.

При описании объективов наряду со светосилой SF, используется понятие диафрагменного (апертурного) числа N или эффективного диафрагменного числа kэ, равных, соответствен­но:

N = 1/r = F/d,

kэ = N/2 .

Значения kэ обычно стандартизуют рядом предпочтительных значений - 1:0,7; 1:1; 1:1,4; 1:2; ... 1:5,6; 1:8; 1:11; 1:16 ... 1:64.

Оптическая (преломляющая) сила линз D зависит от радиуса кривизны R границы раздела двух сред и их коэффициентов преломления n1 и n3 (рис. 5.69):

D = - n1/f = n3/f.

Для линзы, находящейся в воздухе (n1 = n3  1) справедливо выражение:

D = 1/F,

где D измеряется в диоптриях (дп). Для собирающих линз D > 0, для рассеивающих D < 0. Чем больше оптическая сила, тем ближе к линзе располагается изображение и тем меньше величина этого изображения.

Для вычисления преломляющей силы оптической системы с несколькими линзами Dn используется формула Гу­льстранда, учитывающая количество преломляющих пове­рхностей. Так, если оптическая система состоит из нетонких линз, т.е. каждая из них представляет собой систему с двумя преломляющими поверхностями, то для каждой из линз справедливо:

Здесь Dп и Dз - преломляющие силы передней и задней поверхностей линзы соответственно, d - расстояние между ними, n - коэффициент преломления заключенной между ними среды.

В качестве примера рассмотрим глаз человека, представляющий собой оптическую систему с двумя линзами или четырьмя преломляющими поверхностями. Оптическая сила глаза Dг составляет 59 дп. При его напряжении происходит изменение фокусных расстояний хрусталика, и оптическая сила возрастает до 70 дп. Нормальный глаз называется эмметропичес­ким. В этом случае плоскость изображений находится на сетчатке. Близорукость (миопия) возникает, когда задний фокус глаза оказывается перед сетчаткой, дальнозоркость (гиперметропия) - если за ней. Для нормализации близорукого глаза необходимо уменьшить его оптическую силу, для чего к глазу приставляют отрицательную линзу, оптическая сила которой приводит задний фокус на сетчатку. Глаз без хрусталика (афакический) требует для восстановления оптической силы компенсационной очковой линзы силой  11 ... 14 дп. Глаз, как линзовая система, имеет и другие дефекты. Так, например, различие оптической силы глаза в разных направлениях приводит к астигматизму, ко­торый проявляется в том, что изображение двух взаимно перпендикулярных прямых не получаются одинаково резкими.

Важной характеристикой объектива является глубина резкости ТL, выражаемая через расстояние вдоль оптической оси между точками простра­нства изображений, определяющими границы резкого изо­бражения. Для качественных объективов (с высокой разрешающей способностью и аберрацией ниже 0,015 мм) справедливо эмпирическое выражение:

Например, для относительных отверстий r = 1:2 ... 1:4 глубина резкости составляет  0,05 ... 0,1 мм.

В табл. 5.14 представлены некоторые технические характеристики объективов.

Таблица 5.14. Примеры отечественных промышленных объективов

Модель

Тип

F, мм

r

Угловое поле ’, 0

К, линий/мм

Размеры, мм

Мир-1В

Широкоуголь­ный

27 ... 37

3,5 ... 2,8

57 … 70

23 ... 55

112103

Гелиос

Нормальный

50

2,0

44

5260

Таир

Теле

135 ... 1000

2,8 ... 8,0

17 ... 23

28 ... 52

ОКС

Кино

10 ... 150

2,0 ... 2,8

64 ... 100

35 ... 65

2227

Вариогоир

Трансфокатор

11,8 ... 120,0

1,7 ... 2,5

10 … 72

110235

Примечание. KF - кратность изменения фокусного расстояния.

Конденсор предназначен для увеличения освещенности в плоскости изображения. Он создает действительное изображение источника света на конечном расстоянии от него. (Частным случаем конденсора является коллиматор, формирующий параллельный световой пучок). В приемнике он устанавливается после объектива, в передатчике перед ним, но во всех случаях - ближе к плоскости изображений. Конструкция конденсора зависит от апертуры. Простейший конденсор представляет собой пло­сковыпуклую линзу, сферическая поверхность которой направлена в сторону далеко удаленного источника света (или его изображения). Более сложные схемы включают 1 … 2 линзы (при малых значениях апертуры) и не менее трех линз, при апертуре большей 300 (рис. 5.70).

Используемые в современной фотографии оптические системы, состоящие из нескольких линз, получили название «объектив-ан­астиг­мат». В частности, известная модель Индустар содержит 4 линзы, две из которых простые, а две склеенные. Такая схема хорошо исправляет аберрации. Промышленно выпускаются объективы с фокусными расстояниями F = 50 ... 1200 мм и относительными отверстиями r = 1:9 ... 1:2,8. Широкое распространение получили оптические системы с переменным фокусным расстоянием - трансфокаторы. Так, известная схема ZOOM, позволяющая изменять фокусное расстояние в десятки раз, содержит от 6 до 10 и более линз.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
426
Средний доход
с одного платного файла
Обучение Подробнее