Плоское,с.60-65 (Лекции (много вордовский файлов))

2013-09-22СтудИзба

Описание файла

Файл "Плоское,с.60-65" внутри архива находится в папке "Лекции (много вордовский файлов)". Документ из архива "Лекции (много вордовский файлов)", который расположен в категории "". Всё это находится в предмете "механика жидкости и газа (мжг или гидравлика)" из , которые можно найти в файловом архиве МГТУ им. Н.Э.Баумана. Не смотря на прямую связь этого архива с МГТУ им. Н.Э.Баумана, его также можно найти и в других разделах. Архив можно найти в разделе "лекции и семинары", в предмете "механика жидкости и газа (мжг или гидравлика)" в общих файлах.

Онлайн просмотр документа "Плоское,с.60-65"

Текст из документа "Плоское,с.60-65"

и скоростного напора   w2 / 2   набегающего потока. При    = ±  / 2
CP = –3;   в этих точках на поверхности цилиндра – максимальное разрежение. Давление здесь меньше, чем   P   на три скоростных напора. Эксперименты не подтверждают теорию из‑за наличия пограничного слоя, т. е. невозможности безотрывного плавного обтекания цилиндра.

Определим силовое воздействие такого потока на цилиндр. Поскольку цилиндр обтекается потенциальным (невязким) потоком, то на его поверхности действуют только гидродинамические давления. Исключая внешние объемные силы, для проекций элементарной гидродинамической силы получим

Так как   P   направлено против   r,   то

и

Поэтому с учетом (4.18):

(Px   называют силой сопротивления, а   Py   – подъемной силой.)

Как видим, при бесциркуляционном обтекании цилиндра силы   Px   и   Py
равны нулю. Этот результат – следствие принятых допущений об отсутствии в потоке сил вязкости. При обтекании цилиндра потоком вязкой жидкости его сопротивление не равно нулю, и распределение давлений не является симметричным. В вязком потоке давление в конце цилиндра всегда меньше, чем в передней его части, поэтому и проекция   dPx   всегда будет больше нуля.

Циркуляционное обтекание круглого цилиндра. Наложим на изученное обтекание круглого цилиндра циркуляционный поток вокруг вихря, причем вихрь поместим в центр контура цилиндра. Тогда комплексный потенциал

Отсюда

Приравняв уравнение (4.22) к нулю   (w = 0),   найдем положение критических точек:


В зависимости от величины циркуляции возможны следующие три случая расположения критических точек на цилиндре:

1‑й – циркуляция мала:

Тогда

Корни комплексные, имеют общую ординату   Г / 4 w   и отличаются лишь значениями абсцисс. Модуль каждого корня равен   a.   Критические точки расположены симметрично оси   0y.   При   Г  0   критические точки перемещаются к оси   0x;

2‑й – предельный случай:

Тогда корни   z1   и   z2   равны, критические точки совпадают и находятся на мнимой оси в точке   z1 = z2 = ai;

3‑й – циркуляция велика:

Тогда

Оба корня мнимые, причем модуль одного больше радиуса цилиндра, а другого – меньше. Первый корень дает критическую точку   A,   лежащую вне круга на оси   0y,   второй – точку   B   (внутри круга). Около цилиндра создается некоторая область потока, в которой жидкость совершает чисто циркуляционное движение. Вне циркуляционной области происходит поступательно‑циркуляционное обтекание цилиндра.

Найдем распределение скоростей по поверхности цилиндра   (z = aei ).   Из (4.22) получим

Откуда:

Распределение избыточных давлений получим из уравнения Бернулли:

Чтобы определить силовое воздействие циркуляционного потока на цилиндр, воспользуемся уравнениями (4.19) и подставим в них (4.23):

Все интегралы, кроме третьего, равны нулю, поэтому

Таким образом, мы получили очень важный результат: при обтекании цилиндра плоским циркуляционным потоком несжимаемой жидкости на единицу длины цилиндра действует подъемная сила, величина которой равна произведению плотности жидкости, скорости потока на бесконечности и циркуляции скорости вокруг цилиндра. Направление этой силы найдем, если скорость   w   перенести в центр обтекаемого контура и повернуть на 90° против направления циркуляции. Этот вывод – частный случай теоремы
(о подъемной силе)   Н. Е. Жуковского.

Возникновение подъемной силы является результатом несимметричного относительно оси   0x   распределения давлений и скоростей по контуру цилиндра. Например, если направление циркуляции скорости положительно (вращение против часовой стрелки), то в точках, лежащих на нижней половине цилиндра, скорости будут больше, чем в точках на верхней его половине, а избыточное давление – наоборот.

Обратим внимание на то обстоятельство, что создание циркуляционного обтекания цилиндра в потенциальном (безвихревом) потоке было получено путем замены цилиндра одиночным прямолинейным вихревым шнуром, удвоенное напряжение которого и равно циркуляции скорости вокруг цилиндра. На возможность замены твердого тела эквивалентной системой вихрей впервые указал Н. Е. Жуковский. Вихри, заменяющие твердое тело, он назвал присоединительными вихрями.

Решение задач обтекания
по методу конформных отображений

Конформным отображением называют геометрическое преобразование некоторой области   с1,   расположенной в плоскости комплексной переменной
z = x + iy   (физическая плоскость) (см. рис. 36,а), в область, находящуюся в другой плоскости – комплексной переменной    =  + i   (вспомогательная плоскость) (см. рис. 36,б). Такое преобразование осуществляется с помощью аналитической функции

Эта функция называется преобразующей.

Рис. 36. Плоскости комплексной переменной


Рассмотрим основное свойство
конформного преобразования. Так как
z = f ()   – аналитическая функция, то

Приравняем аргументы этих функций:

Здесь аргумент производной      может зависеть от   ,   но при фиксированном    он постоянен. Из полученного равенства (4.26) следует, что


т. е. любая линия в z‑плоскости поворачивается на угол      в ‑плоскости,
если только преобразование аналитично и производная отличается от нуля.

Этот результат справедлив для любой линии, поэтому его можно применить и к двум линиям. Тогда угол между ними составит

откуда видно, что аналитическое преобразование не меняет угла. Преобразования, которые не изменяют углов, называют конформными.

Рассмотрим теперь применение метода конформных отображений для решения плоских потенциальных потоков. Как уже известно, любой плоский потенциальный поток изображается на плоскости с помощью ортогональной сетки, состоящей из линий равного потенциала скорости и линий тока. Сетку течения, нанесенную в одной комплексной плоскости, можно конформно отобразить в любой другой комплексной плоскости, при этом в новой плоскости получится тоже ортогональная сетка, определяющая потенциальное обтекание тела иной геометрической формы.

Итак, чтобы определить обтекание тела заданной, подчас очень сложной формы в z‑плоскости (физической), осуществляют конформное отображение течения на ‑плоскость (вспомогательную) при помощи аналитической функции (4.25), причем предполагается, что течение в z‑плоскости проще и комплексный потенциал уже известен. Рассмотрим два примера.

П р и м е р  1. Пусть   (z)   – искомый комплексный потенциал в z‑плоскости, а
*()   – известный комплексный потенциал циркуляционного обтекания круглого цилиндра в ‑плоскости:

Пользуясь связью между   z   и      (4.25), найдем, что

Взяв производную от      от обеих частей этого равенства, получим

а в бесконечно удаленных точках

где   m ¥   – коэффициент конформного отображения.

Так как при конформном отображении направление вектора скорости   w¥ сохраняется, т. е.   w¥* ïï w¥ ,   то из (4.29) следует, что величина   m¥·   – действительная
и положительная.

Рассмотрим теперь циркуляцию   Г*.   Представив ее как действительную часть интегралов (4.6), т. е. как

заключаем, что циркуляция скорости по любому замкнутому контуру, охватывающему обтекаемый профиль, при конформном отображении не изменяется.

Таким образом, будем иметь окончательное выражение комплексного потенциала в zплоскости в виде параметрической зависимости от параметра   :

П р и м е р  2. Свойство конформного отображения сохранять ортогональность координатной сетки при деформации координатных линий положено в основу введения криволинейных ортогональных систем координат. Проиллюстрируем это (см. пп. «а» и «б»):

а) преобразующая функция

где   c   – действительная постоянная,

дает переход от декартовых координат   xy   к эллиптическим координатам   , .
В самом деле, отделяя в (4.32) действительную и мнимую части, получим

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее