86097 (Статистический анализ выборочных совокупностей), страница 2

2016-07-30СтудИзба

Описание файла

Документ из архива "Статистический анализ выборочных совокупностей", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "математика" в общих файлах.

Онлайн просмотр документа "86097"

Текст 2 страницы из документа "86097"

Асимметрия положительна, если «длинная часть» кривой плотности распределения расположена справа от математического ожидания. Асимметрия отрицательна, если «длинная часть» кривой распределения расположена слева от математического ожидания.

Центральный момент четвертого порядка случайной величины Х характеризует «крутость» или островершинность графика ее плотности распределения и служит для вычисления эксцесса , который определяется по формуле

. (8)

Эксцесс положительный, если кривая распределения имеет острую вершину. Эксцесс отрицательный, если кривая распределения имеет пологую вершину.

Равномерное распределение вероятностей

Распределение вероятностей называют равномерным, если на интервале (a; b), которому принадлежат все возможные значения случайной величины, плотность распределения сохраняет постоянное значение:

(9)

Функция равномерного распределения на интервале (a; b) имеет вид:

Характеристики равномерного распределения определяются по формулам (2) – (4), (7), (8):

1) математическое ожидание ;

2) дисперсия ;

3) среднее квадратическое отклонение ;

4) асимметрия ;

5) эксцесс .

Вероятность попадания случайной величины Х, распределенной по равномерному закону, в заданный интервал (х1; х2) определяется по формуле (1)

.

Показательное распределение

Показательным (экспоненциальным) называют распределение непрерывной случайной величины Х, которое описывается плотностью

(10)

где λ – постоянная положительная величина.

Функция показательного распределения имеет вид:

Характеристики показательного распределения определяются по формулам (2) – (4):

1) математическое ожидание ;

2) дисперсия ;

3) среднее квадратическое отклонение .

Вероятность попадания случайной величины Х, распределенной по показательному закону, в заданный интервал (х1; х2) определяется по формуле (1)

. (11)

Нормальное распределение

Нормальным называют распределение вероятностей непрерывной случайной величины, которое описывается плотностью

(12)

Математическое ожидание нормального распределения равно параметру а. Среднее квадратическое отклонение нормального распределения равно параметру σ. Коэффициент асимметрии и эксцесс нормального распределения равны нулю: и .

Вероятность попадания нормально распределенной случайной величины Х в заданный интервал (х1; х2) определяется по формуле (1):

, (13)

где Ф(х) – функция Лапласа,

. (14)

  1. Статистический анализ выборочной совокупности

Выборочной совокупностью, или просто выборкой, называют совокупность случайно отобранных объектов. Объемом n выборочной совокупности называют число объектов этой совокупности.

Интервальным статистическим распределением выборки называют перечень интервалов и соответствующих им частот ni или относительных частот .

Гистограммой частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которых служат частичные интервалы длиной h, а высоты равны отношению (плотность частоты).

Гистограммой относительных частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которых служат частичные интервалы длиною h, а высоты равны отношению (плотность относительной частоты).

Для распределения наблюдений по интервалам необходимо найти длину интервала h, определяемую как отношение разности между максимальным Xmaх и минимальным Xmin элементами выборки к количеству интервалов k

. (15)

Количество интервалов k (целое число) целесообразно выбрать не менее 7, но и не более 15 или определить по формуле Старджесса

, (16)

где n – объем выборки.

Если k, вычисляемое по формуле Старджесса, нецелое число, то в качестве числа интервалов можно ближайшее к k целое число, не меньшее k.

Статистические оценки параметров распределения

Выборочной средней называют среднее арифметическое значение признака выборочной совокупности. Если все значения х1, х2, …., хn выборки объема n различны, то

.

Если значения признака х1, х2, …., хk имеют соответственно частоты n1, n2, …..nk, причем n1+n2+……+nk=n, то

. (17)

Для характеристики рассеяния значений количественного признака Х выборки вокруг своего среднего значения вводят такой параметр как выборочная дисперсия.

Выборочной дисперсией Dв называют среднее арифметическое квадратов отклонения наблюдаемых значений признака от их среднего значения . Если все значения х1, х2, …., хn признака различны, то

=

Если значения признака х1, х2, …., хk имеют соответственно частоты n1, n2, …..nk, причем n1+n2+……+nk=n, то

. (18)

Выборочным средним квадратическим отклонением называют квадратный корень из выборочной дисперсии:

. (19)

Начальный эмпирический момент порядка s статистического распределения определяют по формуле

, (20)

где xi – наблюдаемое значение признака, ni – частота наблюдаемого значения признака, n – объем выборки.

Начальный эмпирический момент первого порядка равен выборочной средней .

Центральный эмпирический момент порядка s статистического распределения определяют по формуле

.

Центральный эмпирический момент второго порядка равен выборочной дисперсии .

Коэффициент асимметрии статистического распределения определяется по формуле

. (22)

Эксцесс статистического распределения определяется по формуле

. (23)

Относительной характеристикой рассеивания случайной величины выступает коэффициент вариации V, который вычисляется как отношение среднего квадратического отклонения и выборочной средней по формуле

. (24)

Метод моментов

Метод моментов – это определение неизвестных параметров статистического распределения путем приравнивания теоретических моментов рассматриваемого распределения соответствующим эмпирическим моментам того же порядка.

Для нахождения параметра λ показательного распределения необходимо приравнять начальный момент первого порядка показательного распределения начальному моменту первого порядка эмпирического распределения:

(25)

Для нахождения параметров а и σ нормального распределения необходимо:

1) приравнять начальный момент первого порядка нормального распределения к начальному моменту первого порядка эмпирического распределения:

; (26)

  1. центральный момент второго порядка нормального распределения к центральному моменту второго порядка эмпирического распределения:

. (27)

Для нахождения параметров a и b равномерного распределения необходимо:

1) приравнять начальный момент первого порядка равномерного распределения к начальному моменту первого порядка эмпирического распределения:

;

2) центральный момент второго порядка равномерного распределения к центральному моменту второго порядка эмпирического распределения:

.

Параметры равномерного распределения a и b можно определить по формулам

(28)

. (29)

Начальные эмпирические моменты третьего и четвертого порядков статистического распределения приравниваются соответственно к начальным моментам третьего и четвертого порядков случайной величины: и .

Центральные эмпирические моменты третьего и четвертого порядков статистического распределения приравниваются соответственно к центральным моментам третьего и четвертого порядков случайной величины: и .

Проверка статистических гипотез

Установление закона распределения выборочной совокупности проводится через проверку статистических гипотез.

Статистической называют гипотезу о виде неизвестного распределения. Статистические гипотезы бывают двух видов: нулевая (выдвигаемая) гипотеза Н0 и конкурирующая (противоречащая нулевой) Н1.

Проведение проверки статистическими методами приводит к появлению ошибок двух родов: 1) ошибка первого рода – отвержение правильной гипотезы; 2) ошибка второго рода – принятие неправильной гипотезы.

Вероятность совершить ошибку первого рода называют уровнем значимости и обозначают через α. Наиболее часто уровень значимости принимают 0,05, что означает наличие риска отвергнуть правильную гипотезу в пяти случаях из ста.

Для проверки нулевой гипотезы используется специально подобранная случайная величина, которая называется статистическим критерием.

Наблюдаемым значением критерия называют его значение, вычисленное по выборке.

После выбора определенного критерия множество всех его возможных значений разбивают на два непересекающихся подмножества: одно из них содержит значения критерия, при которых нулевая гипотеза отвергается, а другое – при которых она принимается.

Критической областью называют совокупность значений критерия, при которых нулевую гипотезу отвергают.

Областью принятия гипотезы называют совокупность значений критерия, при которых нулевую гипотезу принимают.

Критической точкой называют точку, отделяющую критическую область от области принятия гипотезы. Для каждого критерия имеются соответствующие таблицы, по которым и находят критическую точку.

Основной принцип проверки статистических гипотез формулируется следующим образом: если наблюдаемое значение критерия принадлежит критической области – гипотезу отвергают, если наблюдаемое значение критерия принадлежит области принятия гипотезы – гипотезу принимают. Для проверки гипотезы о закономерности распределения выборочной совокупности применяется критерий Пирсона (хи-квадрат), критические точки которого находят по таблице.

Нулевую гипотезу следует принимать, если наблюдаемое значение критерия Пирсона меньше значения критической точки . Нулевую гипотезу следует отвергнуть, если наблюдаемое значение критерия Пирсона больше значения критической точки .

Для вычисления наблюдаемого значения критерия Пирсона необходимо сравнить эмпирические и теоретические частоты каждого интервала статистического распределения выборки по формуле

, (30)

где k – количество интервалов.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5209
Авторов
на СтудИзбе
430
Средний доход
с одного платного файла
Обучение Подробнее